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This work is concerned with the numerical computation of null controls for the heat equation.

The goal is to compute an approximation of controls that drives the solution from a prescribed

initial state at t = 0 to zero at t = T . In spite of the diffusion of the heat equation, recent

developments indicate that this issue is difficult and still largely open. Most of the existing lit-

erature, concerned with controls of minimal L2-norm, make use of dual convex arguments and

introduce backward adjoint system. In practice, the null control problem is then reduced to

the minimization of a dual conjugate function with respect to the final condition of the adjoint

state. As a consequence of the highly regularizing property of the heat kernel, this final con-

dition – which may be seen as the Lagrange multiplier for the null controllability condition –

does not belong to L2, but to a much larger space than can hardly be approximated by

finite (discrete) dimensional basis. This phenomenon, unavoidable whatever be the numerical

approximation used, strongly deteriorates the efficiency of minimization algorithms. In this

work, we do not use duality arguments and in particular do not introduce any backward

heat equation. For the boundary case, the approach consists first in introducing a class of

functions satisfying a priori the boundary conditions in space and time, in particular the null

controllability condition at time T , and then finding among this class one element satisfying

the heat equation. This second step is done by minimizing a convex functional among the

admissible corrector functions of the heat equation. The inner case is performed in a similar

way. We present the (variational) approach, discuss the main features of it and then describe

some numerical experiments highlighting the interest of the method. The method holds in

any dimension but, for the sake of simplicity, we provide details in the one-space dimensional

case.

Key words: Heat equation; Null controllability; Numerical approximation; Variational

approach

1 Introduction

We are concerned in this work with the null controllability problem for the 1-dimensional

(1D) heat equation for both the boundary and the inner case. We denote by T any strictly

positive real, ω any non-empty (small) subset of (0, 1) and 1ω the characteristic function
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of ω. We introduce the diffusion function a assumed to be uniformly bounded and strictly

positive all over the interval (0, 1):

a ∈ C1([0, 1]), a(x) � a0 > 0 ∀x ∈ [0, 1]. (1.1)

We also introduce in the sequel the notation

qT = ω × (0, T ), QT = (0, 1) × (0, T ), ΣT ∈ {1} × (0, T ). (1.2)

The boundary control problem that we consider here can be stated as follows (see [5,22]):

Given any initial data, u0 ∈ L2(0, 1), find a control function w ∈ L2(ΣT ) such that the

unique (weak) solution u ∈ C0([0, T ];H−1(0, 1)) ∩ L2(0, T ;L2(0, 1)) of the homogeneous

linear equation ⎧⎪⎨
⎪⎩

ut − (a(x)ux)x = 0 (x, t) ∈ QT ,

u(x, 0) = u0(x) x ∈ (0, 1),

u(0, t) = 0, u(1, t) = w(t) t ∈ (0, T )

(1.3)

satisfies the null controllability condition

u(·, T ) = 0 in (0, 1). (1.4)

As it is usual, the solution is defined by transposition. Similarly, the inner (or distributed)

control problem may be stated as follows: Given any initial data u0 ∈ L2(0, 1), find

a control function f ∈ L2(qT ) such that the unique solution u ∈ C0([0, T ];L2(0, 1)) ∩
L2(0, T ;H1

0 (0, 1)) of the homogeneous linear equation

⎧⎪⎨
⎪⎩

ut − (a(x)ux)x = f 1ω (x, t) ∈ QT ,

u(0, x) = u0(x) x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0 t ∈ (0, T )

(1.5)

satisfies (1.4).

In the 1D space case, these controllability problems are known to be solvable since

the 1970s: We refer to the earlier contributions [8, 32] for some proofs based on spectral

arguments. For more recent and general results based on duality arguments and the

Carleman-type estimates, we refer to [1, 14, 23]. As is usual in these types of problems,

the dual approach allows to reduce the controllability problem to a suitable observability

result for the adjoint system. Moreover, in the spirit of the celebrated Hilbert Uniqueness

Method introduced by Lions [25], they lead to a practical way of computing controls of

a given minimal Sobolev norm.

In order to highlight the underlying difficulties that motivate the search of new methods,

let us consider the inner case, which is simpler in many ways with respect to its boundary

counterpart. Since there are controls f ∈ L2(qT ) for (1.5), it is natural to look for

the one with minimal L2-norm, that is, one seeks to minimize the quadratic functional

J(v) = 1
2
‖v‖2

L2(qT )
over the non-empty set

C(u0, T ) = { (u, f) : f ∈ L2(qT ), u solves (1.5) and satisfies (1.4) }.

https://doi.org/10.1017/S0956792514000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000023


Null controllability of the heat equation 279

Since it is difficult to construct pairs in C(u0, T ) (and a fortiori minimizing sequences !),

one may use, following [4], duality arguments to replace the constrained minimization of

J by the unconstrained minimization of its conjugate function J� defined as

J�(ϕT ) =
1

2

∫∫
qT

|ϕ|2 dx dt +

∫ 1

0

u0(x)ϕ(x, 0) dx

over ϕT ∈ H (that will be made precise below), where ϕ is the adjoint backward state

associated with (1.5) such that ϕ(·, T ) = ϕT . The existence of a positive constant C =

C(ω,T ) (the so-called observability constant) such that C(ω,T )‖ϕ(·, 0)‖2
L2(0,1)

� ‖ϕ‖2
L2(qT )

for all ϕT ∈ L2(0, 1) implies that J� is coercive on the Hilbert space H defined as the

completion of D(0, 1) for the norm ‖ϕ‖L2(qT ). The control f of minimal L2(qT )-norm is

then given by f = ϕ̂ 1ω , where ϕ̂ is associated with the unique minimizer ϕ̂T in H of J�

(see [5,16]). The difficulty when one wants to approximate such control, that is when one

likes to minimize J� numerically, is that the space H is huge, in particular, contains H−s

for every s ∈ �, and even elements that may not be distributions. Numerical experiments

do suggest that the minimizer ϕ̂T is very singular (we refer to [4] and also to [2,26,27,29]

for more details). Note that this phenomenon is independent of the choice of J , but is

related to the use of dual variables. As we stressed in the Abstract, the equality (1.4) can

be viewed as an equality in a very small space (due to the strong regularization effect of

the heat kernel). Accordingly, the associated multiplier ϕT must belong to a large dual

space, much larger than L2(0, 1), that cannot be represented numerically. We refer to [11],

generalizing [4] for weighted-norms, where the same ill-posedness is shown and to [18],

where the Tikhonov regularization is introduced and analysed. For these reasons, robust

numerical approximations of null controls for parabolic systems remain a challenge.

Recently, an alternative way of looking at these problems and avoiding the introduction

of dual variables has been introduced in [30]. It is based on the following simple strategy.

Instead of working all the time with solutions of the underlying state equation, and

looking for one that may comply with the final desired state, one considers a suitable

class of functions complying with required initial, boundary and final conditions, and

seeks one of those that is a solution of the state equation. This is in practice accomplished

by setting up an error functional defined for all feasible functions, and measuring how far

those are from being a solution of the underlying state equation. The task of showing that

a problem is controllable amounts to proving that the infimum of the error is a minimum

(there is a global minimizer of the error), and that it vanishes. This job requires some

interesting analysis as the error functional is not a local, classical integral functional but

rather a non-local functional as the one considered for optimal control for distributed

parameter systems [24]. Once we have a feasible function with zero error, the control is

obtained as the trace of this optimal function (or some other function determined in a

unique way through it) in the set where we are entitled to act on the system.

One main practical advantage of this variational approach is that the way to get closer

to a solution of the problem is by minimizing a functional that cannot get stuck on local

minima because the only critical points of the error turn out to be global minimizers with

zero error (see next section). Therefore, a general strategy for numerical approximation

consists in using a typical descent algorithm for this error functional. Exploring this
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possibility for the problems described above is the main purpose for this paper. It is

organised as follows. In Section 2, first we describe (in a non-technical way) the main

ingredients of the variational approach for the heat equation for the boundary case,

following [30]. Then we show that [30] may be adapted to address the inner situation.

By a general-purpose lemma, we prove that the numerical schemes based on the steepest

descent strategy for the error functional always produce numerical sequences that do

converge strongly in the appropriate space (3). We then move on to provide the details for

the numerical approach based on the Polak–Ribière version of the conjugate gradient(CG)

algorithm to minimize the error functional. Section 5 presents several experiments and

discuss the practical interest of the approach. Section 6 treats a typical non-linear example

to stress the flexibility of the approach. The final section provides a simple method to

reduce the cost of controls.

To our knowledge, very few contributions on this topic have appeared since the

seminal paper of Carthel–Glowinski–Lions [4] devoted to approximate controllability

using duality. This is due to the intrinsic ill-posedness of the problem we have just pointed

out. For the null boundary case in 1D space, we mention the motion planning method

introduced in [20] allowing a semi-explicit expression of controlled solutions in term

of Gevrey series. This approach has been adapted and numerically developed recently

in [29] to obtain inner controls. The recent work [12] – following [14] – extend [4] with the

Carleman weighted L2-norm, while [11] provides a different variational approach, based

on Carleman inequalities, that does not make use of duality argument. For a numerical

analysis viewpoint, we also indicate contributions [3, 7, 11, 19].

2 The least squares variational approach of the null controllability

We are going to describe in this section the basic ingredients of the variational approach

in order to apply it to both boundary and inner controllability problems for the 1D heat

equation.

2.1 Boundary controllability

Consider first the boundary controllability problem for the heat equation which consists

in finding a function w ∈ L2(ΣT ), such that the solution of the problem (1.3) will comply

with u(x, T ) = 0 in (0, 1), so that the state u with initial distribution given by initial data

u0 is led to state 0 at time T under the action of the boundary control w at the right-end

point x = 1. The data u0 are given a priori, and the function a is assumed to be uniformly

bounded and strictly positive all over the interval (0, 1).

The main idea of the variational method, as introduced in [30], consists in setting up

an error functional that measures the deviation of functions from being a solution of the

underlying heat equation, and minimizing such error over the class of feasible functions

that comply with initial, boundary and final conditions. Namely, consider the class of

functions

A =

{
u ∈ H1(QT ); u(x, 0) = u0(x), u(x, T ) = 0, x ∈ (0, 1), u(0, t) = 0, t ∈ (0, T )

}
(2.1)
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assumed non-empty. This requirement simply demands some compatibility with the van-

ishing boundary data for x = 0, precisely that u0(0) = 0 and that u0, as the trace of an H1

function over QT , be slightly more regular than L2(0, 1), that is, u0 ∈ H1/2(0, 1). According

to the regularising effect of the heat kernel, this assumption may be removed if we assume

that the control is zero at time t = 0. For any u ∈ A, we define its corrector v over QT as

the solution of the (elliptic) problem⎧⎪⎨
⎪⎩

ut − vtt − (a(x)(ux + vx))x = 0, (x, t) ∈ QT ,

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = 0, t ∈ (0, T ).

(2.2)

Note that the unique solution of this problem is the minimizer over H1
0,x(QT ) = {v ∈

H1(QT ), v = 0on {0, 1} × (0, T )} of the regular quadratic functional

1

2

∫∫
QT

(
(|vt|2 + a(x)|vx|2) + utv + a(x)uxvx

)
dx dt.

The Neumann conditions on the part of the boundary for t = 0, and t = T , are

the natural boundary one. One may also consider Dirichlet conditions. Note how this

variational problem determining the corrector v is a well-defined problem if u ∈ A. Even

though the corrector function v was introduced in [30] for each time slice t to preserve as

general a framework as possible, from the point of view of numerical approximation it is

advantageous to define such error function globally in the whole time-space domain QT by

introducing the additional term −vtt. This has a regularizing effect on the time-dependence,

which is very convenient for numerics.

The error functional is then

E : A → �+, E(u) =
1

2

∫∫
QT

(
|vt|2 + a(x)|vx|2

)
dx dt, (2.3)

where v is the corrector associated with u. It turns out that our problem is controllable

if and only if the minimum of the error vanishes. In particular, it is well known that the

heat problem considered here is controllable, and so the infimum of this error functional

is a minimum, and it does vanish [14].

Once we know that the infimum m � 0 is a minimum, we turn to optimality. We define,

in a classical way, the variation of E in the direction U ∈ A0,

< E ′(u), U >= lim
t→0

E(u + tU) − E(u)

t
,

where the set A0 of admissible variations of u is taken to be

A0 =

{
U ∈ H1(QT ) : U(x, 0) = U(x, T ) = 0, x ∈ (0, 1), U(0, t) = 0, t ∈ (0, T )

}
. (2.4)

We easily obtain that

< E ′(u), U >=

∫∫
QT

(vtVt + a(x)vxVx) dx dt, (2.5)
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where V ∈ H1
0,x(QT ) is the corrector function associated with U ∈ A0, that is, the solution

of ⎧⎪⎨
⎪⎩

Ut − Vtt − (a(x)(Ux + Vx))x = 0, (x, t) ∈ QT ,

Vt(x, 0) = Vt(x, T ) = 0, x ∈ (0, 1),

V (0, 1) = V (1, t) = 0, t ∈ (0, T ).

(2.6)

Multiplying the state equation (2.6) by v, integrating by parts and taking into account the

boundary conditions on v and U, we transform (2.5) into

< E ′(u), U >= −
∫∫

QT

(Utv + a(x)Uxvx) dx dt, ∀U ∈ A0.

Now let us assume that u ∈ A is a minimizer for E so that < E ′(u), U >= 0 for all

U ∈ A0. This equality implies that v satisfies the backward heat equation

{
− vt − (a(x)vx)x = 0, (x, t) ∈ QT ,

a(1)vx(t, 1) = 0, t ∈ (0, T ),

in addition to the boundary conditions

{
vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = 0, t ∈ (0, T ).

For any positive time T > 0, this implies, by the unique continuation property, that the

corrector v of u is zero, that m = E(u) = 0, and the corresponding minimizer u satisfies an

homogeneous heat equation. Since u belongs to A, the minimizer of E is then a controlled

solution of the heat equation. As already said, the Dirichlet control we are looking for is

simply obtained by taking the trace of u along ΣT . As the trace on ΣT of u ∈ H1(QT ), the

control obtained then belongs to H1/2(ΣT ) ⊂ L2(ΣT ). Neumann controls may be obtained

in a similar way. Note that this argument implies that critical points can only occur at

zero error.

Remark 2.1 We insist on the fact that this perspective relies on the minimization of the

error functional, and does not make use of duality argument nor introduce any dual variable.

For each u, the corrector v is the solution of an elliptic linear and well-posed problem in

H1(QT ). Actually, this variational approach introduced by the second author in [30] is a

least squares-type method, as deeply discussed, for instance, in [15, chap. VII], where the

search of solution(s) for F(u) = 0, given any F : H1
0 (Ω) → H−1(Ω) and a bounded domain

Ω ∈ �N is replaced by the extremal problem:

min
u∈H1

0 (Ω)
‖v‖2

H1
0 (Ω),

where v = v(u) solves the elliptic problem: −Δv = F(u) in Ω, v = 0 on ∂Ω.

We refer to [11] where a different variational approach leading to an elliptic problem

defined on QT has been introduced and analysed.
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Note that, even though there might not be rigorous results to be applied for some

particular situation, the decrease of the error to zero is a sure indication that the problem

is being (at least approximatively) controlled.

Remark 2.2 There are many ways to define the corrector v. One may, for instance, replace

the state equation of (2.2) by the following equation:

ut − vtt − (a(x)ux + vx)x = 0, (x, t) ∈ QT

leading to E(u) = 1
2

∫∫
QT

(|vt|2 + |vx|2) dx dt, and the same expression of the first derivative.

The choice we made in (2.2) seems the closest to the notion of a corrector for the heat

equation.

2.2 Inner controllability

Let us now turn to the inner controllability case, which is as usual in control theory a bit

simpler. This time we assume that the control is acting on a small subset ω (for simplicity,

assumed independent of the time variable) of (0, 1).

Following again the ideas developed in the previous section, let us present an approach

leading to a control in L2(qT ). We define the non-empty set

A =

{
(u, f); u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)); u′ ∈ L2(0, T ,H−1(0, 1)),

× u(x, 0) = u0(x), u(x, T ) = 0, x ∈ (0, 1), f ∈ L2(qT )

}

and the extremal problem :

inf
(u,f)∈A

E(u, f) :=
1

2

∫∫
QT

(|vt|2 + a(x)|vx|2)dx dt, (2.7)

where the corrector v = v(u, f) ∈ H1(QT ) is defined by

⎧⎪⎨
⎪⎩

ut − vtt − (a(x)(ux + vx))x − f 1ω = 0, (x, t) ∈ QT ,

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = 0, t ∈ (0, T ).

(2.8)

The well-posedness of this extremal problem is a consequence of the inner controllab-

ility of the heat equation: If u is a controlled solution for the heat equation with a

control f ∈ L2(qT ), then (u, f) belongs to A, v solution of (2.2) vanishes on QT and

min(u,f)∈A E(u, f) = 0.
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Conversely, we check that any minimizer of E in A is a solution of the heat equation

with source term f 1ω . We define

A0 =

{
(u, f); u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)); u′ ∈ L2(0, T ,H−1(0, 1)),

× u(x, 0) = u(x, T ) = 0, x ∈ (0, 1), f ∈ L2(qT )

}

so that for any (U, F) ∈ A0, we compute that

< E ′(u, f), (U, F) >=

∫∫
QT

(vtVt + a(x)vxVx)dx dt =

∫∫
QT

(Uvt − a(x)Ux vx + Fv 1ω) dx dt

where V ∈ H1(QT ) is the corrector associated with (U, F) ∈ A0. We have used here

that −
∫ T

0
< Ut, v >H−1 ,H1 dt =

∫∫
QT

Uvt dx dt −
∫ 1

0
[Uv]T0 dx =

∫∫
QT

Uvt dx dt. Writing that

< E ′(u, f), (U, F) >= 0 for all (U, F) in A0, we obtain that the corrector satisfies the

condition {
vt + (a(x)vx)x = 0, (x, t) ∈ QT ,

v = 0, (x, t) ∈ qT

in addition to the boundary conditions on v (see (2.8)). Again, a unique continuation

property (see, for instance, [14, chap. 1]) implies that v = 0 in QT so that (u, f) ∈ A
solves the heat equation. This reduces the search of a control f distributed in ω to the

minimization of the functional E over A.

Remark 2.3 In order to address the inner case, an alternative is as follows. Put A and

A0 as in the boundary-controllability situation. To ensure that the solution u satisfies the

homogeneous heat equation off qT = ω × (0, T ), we consider the following error functional:

E(u) =
1

2

∫∫
QT \qT

(
|vt|2 + a(x)|vx|2

)
dx dt (2.9)

where the corrector v is defined in two pieces:

(1) off qT : ⎧⎪⎨
⎪⎩

ut − vtt − (a(x)(ux + vx))x = 0, (x, t) ∈ QT \ qT ,

v = 0, (x, t) ∈ ∂((0, 1) \ ω) × (0, T ),

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1) \ ω.

(2.10)

(2) in qT : ⎧⎪⎨
⎪⎩

ut − vtt − (a(x)(ux + vx))x = 0, (x, t) ∈ qT ,

v = 0, (x, t) ∈ ∂ω × (0, T ),

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1) ∩ ω.

(2.11)

Then, proceeding as before, it can be shown that if u is a minimizer for E, then the cor-

responding corrector v vanishes outside qT . A control is then given by (vtt + (a(x)vx)x)1ω .
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This procedure gives satisfactory numerical results. Note, however, that the control is only

in H−1(qT ). However, this way of proceeding is a bit artificial in the sense that the control

u is found essentially as a boundary-controllability situation in QT \ qT .

Remark 2.4 Since the controllability problem is formulated in QT , we may consider, without

further change, the case where the support of the control depends on time variables, i.e.

qT = {(x, t) ∈ QT : g(t) < x < h(t), t ∈ (0, T )}, where g and h are two smooth functions

on [0, T ] with 0 < g � h < 1, g(t) � h(t). We refer to [11] for some experiments using a

different variational approach.

3 Convergence of minimizing sequences for E

One main issue in all the situations discussed earlier is to establish the convergence of

the various numerical procedures proposed. They all seem to perform reasonably well, at

least in the numerical tests carried out in this contribution. One main difficulty in showing

such convergence of iterates is that the error functionals are not, in general, coercive

in the appropriate spaces. They all are quadratic, non-negative, and so convex. But we

will, in general, lack coercivity and strict convexity. To prove the convergence of all the

numerical procedures treated here, we prove a general-purpose result that can be applied

to the various scenarios dealt with above.

Lemma 3.1 Suppose T : X 
→ Y is a linear, continuous operator between Hilbert spaces,

and H ⊂ X, a closed subspace, u0 ∈ X. Put

E : u0 + H 
→ R+, E(u) =
1

2
‖Tu‖2, A = kerT ∩ H.

(1) Then E : u0 + A⊥ → R is quadratic, non-negative and strictly convex, where A⊥ is the

orthogonal complement of A in H .

(2) The derivative E ′(u0 + u) always belongs to A⊥. In particular, a typical steepest descent

procedure will always stay in the manifold u0 + A⊥.

(3) If, in addition,

min
u∈H

E(u0 + u) = 0,

then the steepest descent scheme will always produce sequences converging (strongly in

X) to a unique (in u0 + A⊥) minimizer u0 + u with zero error.

Proof Suppose there are ui ∈ A⊥, i = 1, 2, such that

E

(
u0 +

1

2
u1 +

1

2
u2

)
=

1

2
E(u0 + u1) +

1

2
E(u0 + u2).

Due to the strict convexity of the norm in a Hilbert space, we deduce that this equality

can only occur if Tu1 = Tu2. Therefore, u1 − u2 ∈ A ∩ A⊥ = {0}, and u1 = u2.
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For the second part, note that for arbitrary U ∈ A, TU = 0, and so

E(u0 + u + U) =
1

2
‖Tu0 + Tu + TU‖2 =

1

2
‖Tu0 + Tu‖2 = E(u0 + u).

Therefore, the derivative E ′(u0 + u), the steepest descent direction for E at u0 + u, has to

be orthogonal to all such U ∈ A.

Finally, assume E(u0 + u) = 0. It is clear that this minimizer is unique in u0 +A⊥ (recall

the strict convexity in (1)). This, in particular, implies that for arbitrary u ∈ A⊥,

〈E ′(u0 + u), u − u〉 � 0, (3.1)

because this inner product is the derivative of the section t 
→ E(u0 + tu + (1 − t)u) at

t = 0, and this section must be a positive parabola with the minimum point at t = 1. If

we consider the gradient flow

u′(t) = −E ′(u0 + u(t)), t ∈ [0,+∞),

then, because of (3.1),

d

dt

(
1

2
‖u(t) − u‖2

)
= 〈u(t) − u, u′(t)〉 = 〈u(t) − u,−E ′(u0 + u(t))〉 � 0.

This implies that sequences produced through the steepest descent method will be minim-

izing for E, uniformly bounded in X (because ‖u(t) − u‖ is a non-increasing function of

t), and due to the strict convexity of E restricted to u0 + A⊥, they will have to converge

towards the unique minimizer u0 + u. �

Remark 3.2 Despite the strong convergence in this statement, it may not be true that the

error is coercive, even restricted to u0 + A⊥, so that that strong convergence could be very

slow. Because of this same reason, it may be impossible to establish rates of convergence for

these minimizing sequences.

The element u0 determines the non-homogeneous data set of each problem: source

term, boundary conditions, initial and/or final condition etc. The subspace H is the subset

of the ambient Hilbert space X for which the data set vanishes. T is the operator defining

the corrector so that ker(T ) is the subspace of all solutions of the underlying equation or

system. The subspace A is the subspace of all solutions of the problem with vanishing data

set. In some situations A will be trivial, but in some others will not be so. The important

property is (3) in the statement guaranteeing that we indeed have strong convergence in

X of iterates. The main requirement for this is to know a priori that the error attains its

minimum value, i.e. zero somewhere.

In the particular situation of boundary controllability for the heat equation (Section

2.1), X is taken to be H1(QT ), and H = A0 is given in (2.4). The operator T takes

each u ∈ H1(QT ) into its corrector v through (2.2). If u0 is chosen appropriately, then

u0 + H = A in (2.1). Finally, the subspace A is the subspace of all solutions of the

homogeneous heat equation which also comply with the vanishing boundary conditions
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around the boundary of QT except for x = 1. This is a non-trivial subspace of H1(QT )

that makes an interesting problem to look for the control of minimal L2-norm over x = 1.

As has already pointed out, we do know that the error does attain the minimum value,

and it vanishes because exact boundary null-controllability holds for the heat equation.

Therefore, the main requirement of the above lemma holds, and we thus have the strong

convergence of computed iterative sequences based on the minimization of the error.

4 Numerical resolution of the minimization problem

As shown in the previous section, the practical search of controls for the heat equation

may be reduced to the minimization for corrector problems. We describe in this section

the minimization procedure to approximate numerically correctors. We give the details of

the boundary case, and then point out the main differences for the inner counterpart.

For the boundary case, we have to solve⎧⎪⎨
⎪⎩

Minimize E(u) =
1

2

∫∫
QT

(|vt|2 + a(x)|vx|2) dx dt,

subject to u ∈ A
(4.1)

with A =
{
u ∈ H1(QT ); u(x, 0) = u0 on (0, 1), u(·, T ) = 0 on (0, 1), u(x, t) = 0 on ΣT

}
. We

endowed the space A with the scalar product

(u, v)A =

∫∫
QT

(ut vt + a(x)ux vx + u v)dxdt, ∀u, v ∈ A

and note that ‖u‖A =
√

(u, u)A for all u ∈ A. The Hilbert space A0 is endowed with the

same scalar product.

4.1 Conjugate gradient algorithm

The Polak–Ribière version of the CG algorithm to minimize E over A is as follows

(see [15]):

• Step 0. Initialization: Given any ε > 0 and any u0 ∈ A, compute the residual g0 ∈ A0

solution of

(g0, U)A =< E ′(u0), U > ∀U ∈ A0.

If ‖g0‖/‖u0‖ � ε, take u = u0 as an approximation of a minimum of E, otherwise set

z0 = g0.

For n � 0, assuming un, gn, zn being known with gn and zn, both different from zero,

compute un+1, gn+1 and if necessary zn+1 as follows:

• Step 1. Steepest descent: Set un+1 = un − λnz
n, where λn ∈ � is the solution of the 1D

minimization problem,

minimize E(un − λzn), over λ ∈ �. (4.2)
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Then compute the residual gn+1 ∈ A0 from the relation

(gn+1, U)A =< E ′(un+1), U > ∀U ∈ A0.

• Step 2. Convergence testing and construction of the new descent direction: If

‖gn+1‖A/‖g0‖A � ε, take u = un+1; otherwise compute

γn =
(gn+1, gn+1 − gn)A

(gn, gn)A
, zn+1 = gn+1 + γnz

n. (4.3)

Then do n = n + 1, and return to step 1.

Let us provide more details for two important steps of the algorithm:

• Since E is a quadratic functional with respect to u, one may explicitly solve problem

(4.2): We write

E(un − λzn) = E(un) − λ

∫∫
QT

(
vnt Z

n
t + a(x)vnxZ

n
x

)
dx dt

+
λ2

2

∫∫
QT

(
|Zn

t |2 + a(x)|Zn
x |2

)
dxdt

where Zn
x is the corrector of zn, solution of{

znt − Zn
tt −

(
a(x)

(
znx + Zn

x

))
x

= 0, (x, t) ∈ QT ,

Z(·, t) = 0, Σt, Zt(x, ·) = 0, Σx

so that the optimal parameter is given by

λn =

∫∫
QT

(
vnt Z

n
t + a(x)vnxZ

n
x

)
dx dt∫∫

QT

(
|Zn

t |2 + a(x)|Zn
x |2

)
dx dt

= −
∫∫

QT

(
znt v

n + a(x)znxv
n
x

)
dxdt∫∫

QT

(
|Zn

t |2 + a(x)|Zn
x |2

)
dx dt

.

• The computation of the residual gn is performed as follows. According to equality

< E ′(un), U >= −
∫∫

QT

(
Utv

n + a(x)Uxv
n
x

)
dx dt, ∀U ∈ A0,

E ′(un) ∈ H−1(QT )) may be identified with the linear functional on A0 defined by

U → −
∫∫

QT

(
Utv

n + a(x)Uxv
n
x

)
dx dt.

It then follows that gn is the solution of the following linear variational problem: Find

gn ∈ A0 such that∫∫
QT

(
gnt Ut + a(x)gnxUx + gnU

)
dx dt = −

∫∫
QT

(
Utv

n + a(x)Uxv
n
x

)
dx dt, ∀U ∈ A0,
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where vn ∈ H1
0,x(QT ) is the corrector associated with un. The well-posed elliptic boundary

value problem corresponding to this variational formulation is

⎧⎪⎨
⎪⎩

− gntt −
(
a(x)gnx

)
x
+ gn = vnt +

(
a(x)vnx

)
x

(x, t) ∈ QT ,

gn(0, t) = 0, gnx(1, t) + vnx(1, t) = 0, t ∈ (0, T ),

gn(x, 0) = gn(x, T ) = 0, x ∈ (0, 1).

(4.4)

Remark 4.1 As we have mentioned above, the parameter γn given by (4.3) corresponds to

the Polak–Ribière version of the conjugate gradient algorithm. In the present quadratic-

linear situation, this one should coincide with the Fletcher–Reeves conjugate algorithm for

which

γn = ‖gn+1‖2
A/‖gn‖2

A,

since gradients are conjugate to each other ((gm, gn)A = 0 for all m � n). However, we

observed that in the parabolic situation (see also [11]) the Polak–Ribière version (mainly

used in nonlinear situations) allows to reduce the loss of orthogonality due to numerical

approximation.

The detailed conjugate gradient scheme, written in a variational form, used for the

minimization of E is then as follows:

Step 0. Initialization: u0 ∈ A be given, compute the corrector v0 ∈ H1
0,x(QT ) of u0 solution

of ∫∫
QT

(
v0
t φt + a(x)v0

xφx

)
dx dt = −

∫∫
QT

(
u0
t φ + a(x)u0

xφx

)
dx dt, ∀φ ∈ H1

0,x(QT ),

then compute the gradient g0 ∈ A0 solution of

∫∫
QT

(
g0
t φt + a(x)g0

xφx + g0φ
)
dx dt = −

∫∫
QT

(
v0φt + a(x)v0

xφx

)
dx dt, ∀φ ∈ A0,

and set z0 = g0.

Then, for n � 0, assuming un, gn, zn and vn known, compute un+1, gn+1, zn+1 and vn+1

by:

Step 1. Steepest descent: Compute the corrector Zn ∈ H1
0,x(QT ) of zn solution

∫∫
QT

(
Zn
t φt + a(x)Zn

xφx

)
dx dt = −

∫∫
QT

(
znt φ + a(x)znxφx

)
dx dt, ∀φ ∈ H1

0,x(QT ),

and set un+1 = un − λnz
n ∈ A with

λn = −
∫∫

QT

(
znt v

n + a(x)znxv
n
x

)
dxdt∫∫

QT

(
|Zn

t |2 + a(x)|Zn
x |2

)
dx dt

.
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Next, compute the corrector vn+1 ∈ A1 of un+1 solution of∫∫
QT

(
vn+1
t φt + a(x)vn+1

x φx

)
dx dt = −

∫∫
QT

(
un+1
t φ + a(x)un+1

x φx

)
dx dt, ∀φ ∈ H1

0,x(QT ),

and the gradient gn+1 ∈ A0 solution of∫∫
QT

(
gn+1
t φt+a(x)gn+1

x φx+gn+1φ
)
dxdt = −

∫∫
QT

(
vn+1φt+a(x)vn+1

x φx

)
dx dt, ∀φ ∈ A0.

Step 2. Construction of the new descent direction: If ‖gn+1‖A/‖g0‖A � ε, take u = un+1;

otherwise compute

γn =
(gn+1, gn+1 − gn)A

(gn, gn)A
, zn+1 = gn+1 + γnz

n.

Then do n = n + 1, and return to step 1.

Once the convergence of the algorithm is reached, up to the threshold ε, we take the

trace of u on ΣT to define an approximation of the control w of (1.3): w(t) = u(1, t),

t ∈ (0, T ). We next compute an approximation of the controlled solution u by solving

(1.3): the L2-norm ‖u(·, T )‖L2(0,1), which may be seen as an a posteriori error, allows to

evaluate the efficiency of the approach.

The minimization of the functional E related to the inner case (see (2.9)) is very similar.

The main difference is that the corrector have to be solved independently in and off qT
(see (2.10) and (2)). The additional condition is v = 0 on ∂ω × (0, T ). It is important

to note that these correctors are linked through the descent direction gn, solution of the

problem posed in all of the domain QT :∫∫
QT

(
gnt Ut + a(x)gnxUx + gnU

)
dx dt = −

∫∫
QT \qT

(
Utv

n + a(x)Uxv
n
x

)
dx dt, ∀U ∈ A0

= H1
0 (QT ). (4.5)

4.2 Numerical approximation

For ‘large’ integers Nx and Nt , we set Δx = 1/Nx , Δt = T/Nt and h = (Δx, Δt). Let us

denote by PΔx the uniform partition of [0, 1] associated with Δx, and let us denote by Qh

the uniform quadrangulation of QT associated with h. In particular,

QT =
⋃

K∈Qh

K.

The following (conformal) finite element approximation of H1(QT ) is introduced:

Xh = {ϕh ∈ C0([0, 1] × [0, T ]) : ϕh|K ∈ (�1,x ⊗ �1,t)(K) ∀K ∈ Qh }.

Here �m,ξ denotes the space of polynomial functions of order m in the variable ξ.

Accordingly, the functions in Xh reduce on each quadrangle K ∈ Qh to a polynomial of
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the form A + Bx + Ct + Dxt involving four degrees of freedom (4 DOF)). Obviously, the

space Xh is a conformal approximation of L2(QT ). We will also consider the space

X0h = {ϕh ∈ Xh : ϕh(0, t) = ϕh(1, t) = 0 ∀t ∈ (0, T ) },
Xuh = {ϕh ∈ Xh : ϕh(0, t) = 0 ∀t ∈ (0, T ), ϕh(x, 0) = u0(x), ϕh(x, T ) = 0 ∀x ∈ (0, 1)}.

Xuh and X0h are finite-dimensional subspace of A and H1
0,x(QT ) respectively (and also

of L2(0, T ;H1(0, 1))). Functions ϕh ∈ X0h are uniquely determined by their values at the

nodes (xj, tj) of Qh such that 0 < xj < 1.

Therefore, for any h, we consider the following problem, which is an approximation of

(4.1): ⎧⎪⎨
⎪⎩

Minimize Eh(uh) =
1

2

∫∫
QT

(
|vh,t|2 + a(x)|vh,x|2

)
dx dt,

subject to uh ∈ Xuh.

(4.6)

According to the conjugate gradient algorithm, this minimization problem is reduced to

the resolution of well-posed elliptic problems defined on QT in order to compute corrector

functions vh ∈ X0h.

Once the optimal function uh, minimizer of E over Xh, is obtained, the control wh is

defined by wh = uh on ΣT . In order to check the quality of the control wh, piecewise linear

along ΣT , one may compare such solution in Xuh with the solution uh of (1.3) starting from

u0 at time t = 0 such that uh = wh on ΣT . uh is computed using, for the time discretization,

the two-step implicit Gear scheme of order two in time (see, for instance, [16]). We set

ΦΔx = { z ∈ C0([0, 1]) : z|k ∈ �1,x(k) ∀k ∈ PΔx },

a finite-dimensional subspace of L2(0, 1). Functions in ΦΔx are uniquely determined by

their values at the nodes of PΔx .

The Gear scheme, which is of order two, is then combined with a �1-finite element

discretization in space as follows:

(1) Firstly, we first set uh|t=0 = u0,Δx.

(2) Secondly, uh|t=t1 is the solution of the linear problem in Ψ ∈ ΦΔx⎧⎪⎨
⎪⎩

∫ 1

0

1

Δt
(Ψ − uh|t=0)z dx +

1

2

∫ 1

0

a(x)(Ψ + uh|t=0)xzx dx = 0

∀z ∈ ΦΔx .

(3) For given n = 2, . . . , Nt − 1, Ψ� = uh|t=tn−1
and Ψ = uh|t=tn , uh|t=tn+1

is the solution of

the linear problem in Ψ ∈ ΦΔx⎧⎪⎨
⎪⎩

∫ 1

0

1

2Δt
(3Ψ − 4Ψ + Ψ�)z dx +

∫ 1

0

a(x)Ψxzx dx = 0

∀z ∈ ΦΔx .

The L2-norm ‖uh(·, T )−uh(·, T )‖L2(0,1) = ‖uh(·, T )‖L2(0,1) allows to analyse a posteriori how
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Table 1. Boundary case – u0(x) = sin(πx), T = 1/2, a0 = 1/4, Δx = Δt = 1/100 –

ε = 10−5 – numerical results with respect to h = (Δx, Δt)

Δx = Δt 1/25 1/50 1/100 1/200

� CG iteration 846 2, 132 2, 014 2, 834

‖uh‖L2(QT ) 4.78 × 10−1 5.06 × 10−1 4.81 × 10−1 4.87 × 10−1

‖uh‖H1(QT ) 6.024 6.658 5.920 6.021

‖uh‖L2(ΣT ) 1.369 1.487 1.392 1.418

‖uh(·, T )‖L2(0,1) 1.95 × 10−2 9.65 × 10−3 8.39 × 10−3 6.04 × 10−3

‖uh − uh‖L2(QT ) 1.45 × 10−2 6.31 × 10−3 2.01 × 10−3 9.34 × 10−4

Eh(uh) 4.88 × 10−6 8.37 × 10−7 1.22 × 10−6 8.29 × 10−7

the constraint (1.4) is satisfied. Recall that uh, obtained by an integration in time, solves

the heat equation.

This same numerical approximation is used for the inner case.

5 Numerical experiments

We now present some numerical experiments, and analyse the behaviour of the computed

controls with respect to the data, and h. We assume for simplicity that Δx = Δt, that is,

we consider only uniform meshes Qh.

5.1 Experiment 1: boundary case

As in [11, 29], we assume that the function u0 to be controlled is the first mode of the

Laplacian, that is,

u0(x) = sin(πx), x ∈ (0, 1)

for which the diffusion of (1.3), without control, i.e. v = 0, is the lowest. Moreover, we

assume that the diffusion function a is constant equal to a(x) = a0 = 1/4 in (0, 1), and

take a controllability time, T = 1/2. We take a value a0 lower than one in order to have

a better control of the diffusion. Without control, these data lead to ‖u(·, T )‖L2(0,1) =√
1/2e−π2/8 ≈ 0.205 and therefore leads to a stiff case in the context of null boundary

controllability for the heat equation.

We take ε = 10−5 as the value for the stopping criterion of the conjugate gradient

algorithm. The algorithm is initialized with u0 ∈ A defined by u0(x, t) = u0(x)(1 − t/T )2,

(x, t) ∈ QT .

Table 1 gives various norms of the solution uh ∈ A with respect to h, and clearly

suggests the convergence of the approximation. Figure 1 depicts the evolution of Eh(u
n
h)

and the residual ‖gnh‖A (in log10-scale) with respect to the iteration of the conjugate

gradient corresponding to Δx = Δt = 1/100. The algorithm requires 2, 013 iterations to

fulfill ‖gnh‖A � ε. As is typical when the heat equation is involved, the slope of the residual

decreases significantly after the first iteration. This phenomenon is also possibly due to

the lack of coercivity of E. We, however, check that the functional Eh(u
n
h) decreases with

respect to the iteration and reaches a small value, here of the order O(10−6).
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Figure 1. (Colour online) Boundary case – u0(x) = sin(πx), Δx = Δt = 1/100 - log10(Eh(u
n
h))

(dashed line) and log10(‖gnh‖A) (full line) versus the iteration n of the conjugate gradient algorithm.

Figure 2 depicts the corresponding solution uh ∈ A, and corrector vh ∈ H1
0,x(QT ). The

trace of uh on ΣT is given in Figure 4 (left). The control obtained is oscillating near t = T .

This is reminiscent of what is obtained in [20] by computing exactly the controlled heat

solution in the 1D space by means of the motion planning method (we also refer to [29]

for an adaptation to the inner case using the so-called transmutation method ). We also

plot in Figure 3 the iso-values of the solution uh that allow to appreciate the diffusion and

the control of the heat from the initial to the controllability time. Finally, the solution uh
of (1.3) with w(t) = uh(1, t) is plotted at time T in Figure 4 (right). We compute that the

L2-norm of uh(1, T ), what we called the a posteriori error, is ‖uh(·, T )‖L2(0,1) ≈ 8.39×10−3.

This is an acceptable value that can be improved by reducing ε and h. Note that the

stiffness matrices involved in the resolution of the elliptic problems in step 1 are standard

and well-conditioned. Note also that a small gap between u and u (in particular at time

T ) is a priori unavoidable since they are approximated and computed in a different way.

It is also interesting to note that this method allows to obtain non-trivial controlled

solution of the heat equation with zero initial data, that is in A0. Figure 5 depicts one

such solution obtained with the initial function u0(x, t) = sin(πx)t2(1−t/T )2. For ε = 10−6,

the algorithm converges after 1, 242 iterations, and we get Eh(u
n=1 242
h ) ≈ 6.63 × 10−9 and

‖uh(·, T )‖L2(0,1) ≈ 2.89×10−5. Accordingly, this means that any linear combination of such

non-trivial solution in A0 with the previous ones in A remains a controlled solution of

the heat equation. We will get back to this notion in Section 7. The non-uniqueness of

our minimization problem may also be checked by considering different initial function

u0 ∈ A.

As expected, the experiments also suggest that the situation is more favourable, notably

with respect to the speed of convergence of the algorithm when the control acts on both
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×

Figure 2. (Colour online) Boundary case – u0(x) = sin(πx). Solution of uh ∈ Ah (left) and

corresponding corrector vh (right) along QT .

Figure 3. (Colour online) Boundary case – u0(x) = sin(πx). Iso-values of uh ∈ Ah along QT .

sides, that is, on x = 0 and 1. Figure 6 shows the controlled solution with initial data

u0(x) = sin(πx)+sin(2πx)+sin(3πx) in that situation. For the same value of ε, the L2-norm

of the corrector as well as the a posteriori error are lower than in the previous situation:

Eh(u
n=855
h ) ≈ 6.69 × 10−6 and ‖uh(·, T )‖L2(0,1) ≈ 2.21 × 10−4 after 855 iterations.

We also emphasize that we may consider the more realistic situation where null

Neumann boundary limit holds on the free part, here x = 0. It suffices to start with

u0 ∈ AN = {u ∈ H1(QT ), u(·, T ) = 0, u(·, 0) = u0, ux(0, t) = 0}, and impose that both the

descent direction and the corrector have null derivatives at x = 0. Figure 7 shows the

function uh ∈ AN associated with u0(x) = sin2(πx). Figure 8 depicts the corresponding

iso-values of uh. With ε = 10−5, the convergence is reached after 3, 431 iterations, and

we get ‖uh(·, T )‖L2(0,1) ≈ 1.31 × 10−2. The convergence is slower in this case because null
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Figure 4. (Colour online) Boundary case – u0(x) = sin(πx). Full line: Trace uh(x = 1, t) versus

t ∈ (0, T ) (left), and a posteriori solution uh(x, T ) versus x ∈ (0, 1) (right); dashed line: same

quantities obtained with an additional compact support function in time.

×

Figure 5. (Colour online) Boundary case – u0 = 0. Control acting on 0 – ε = 10−6. Solution in

uh ∈ Ah (left), and the corresponding corrector vh (right) along QT . Eh(u
n=1 242
h ) ≈ 6.63 × 10−9 and

‖uh(·, T )‖L2(0,1) ≈ 2.89 × 10−5.

Neumann boundary condition – contrary to null Dirichlet one – does not emphasize the

dissipation of the solution.

Finally, let us comment on a simple way to smooth out the control near t = T , and

therefore avoid the oscillations that we mentioned at the beginning of this section (see

Figure 4 (left)). It suffices to replace at each iteration n the descent direction gn by c(t)gn

with any smooth positive function c such that c(T ) = c′(T ) = 0. Figure 4 gives (in dashed

line) the quantities uh(1, ·) on (0, T ) and u(·, T ) on (0, 1) obtained with c(t) = sin2(πt/T )

(in that case, note that the solution is also smoothed at t = 0). This modification has the

effect to reduce the a posteriori error ‖uh‖L2(0,1) but to increase the number of iterations.

Note also that the L2-norm of the trace is larger (see Table 2).

We observe similar results with the Dirichlet boundary condition on (0, 1) × {0, T } in

(2.2). The CG algorithm converges faster and leads to a control with smaller L2-norm.

The a posteriori error ‖uh‖L2(0,1) is however larger.
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Table 2. Boundary case – u0(x) = sin(πx) – ε = 10−5. Numerical results with respect to

h = (Δx, Δt) with a compact support function in time

Δx = Δt 1/25 1/50 1/100 1/200

� CG iteration 2, 552 2, 724 3, 689 4, 276

‖uh‖L2(QT ) 5.19 × 10−1 5.26 × 10−1 5.57 × 10−1 5.71 × 10−1

‖uh‖H1(QT ) 7.052 7.092 7.889 8.285

‖uh‖L2(ΣT ) 1.526 1.554 1.678 1.738

‖uh(·, T )‖L2(0,1) 9.08 × 10−3 5.25 × 10−3 3.46 × 10−3 2.83 × 10−3

‖uh − uh‖L2(QT ) 9.51 × 10−3 2.73 × 10−3 1.19 × 10−3 9.61 × 10−4

Eh(uh) 2.88 × 10−6 2.17 × 10−6 1.20 × 10−6 1.19 × 10−6

×

Figure 6. (Colour online) Boundary control – u0(x) = sin(πx)+ sin(2πx)+ sin(3πx). Control acting

on {0, 1} – ε = 10−5. Solution in uh ∈ Ah (left), and the corresponding corrector vh (right) along QT .

Figure 7. (Colour online) Boundary case – u0(x) = sin2(πx). Controlled solution uh over QT with

free Neumann boundary condition at x = 0.
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Figure 8. (Colour online) Boundary case – u0(x) = sin2(πx). Iso-values of uh ∈ Ah along QT with

free Neumann boundary condition at x = 0.

5.2 Experiment 2: inner case

Let us consider the following data: ω = (0.2, 0.5), T = 1/2 and a(x) = a0 = 1/4 used

notably in ([11, 29]). The initial data to be controlled are again u0(x) = sin(πx).

Table 3 collects some numerical values obtained with the CG algorithm and ε = 10−6.

In order to have a vanishing control at time t, we simply replace in the formulation

(2.8) the characteristic function 1ω(x) by 1ω(x)m(t) for any smooth time function m such

that m(T ) = 0. The control is thus f(x, t)1ω(x)m(t). Here we take m(t) = (1 − t/T )2.

The situation is more favourable than the boundary case in the sense that the number

of iterations to reach a relative residual of order 10−6 (instead of 10−5 in Table 1)

is significantly reduced. The evolution of the cost function is given in Figure 9. As a

consequence, the a posteriori error ‖uh(·, T )‖L2(0,1) is smaller, of the order O(10−5). We also

check the boundedness for the L2(qT ) norm of fh m(t) with respect to h, and converges

as h → 0. The controlled solution uh ∈ A and the corresponding control fh 1ω(x)m(t)

are depicted on Figures 10 and 11 respectively for (Δt, Δx) = (1/100, 1/100). The iso-

values of the corrector function vh are depicted in Figure 12. Note that this control,

obtained with the initial guess u0(x) = sin(πx)(1 − t/T )2, is quite different from the

controls obtained by duality arguments in [29]. Mainly concentrated at the beginning of

the time interval (it is the effect of the decreasing positive function m(t)), this L2-norm is

larger: for h = (1/100, 1/100), we obtain ‖f(x, t) 1ω(x)m(t)‖L2(QT ) ≈ 2.839, about twice the

HUM-control obtained in [29].

6 Remarks on a non-linear situation

As a good way to emphasize the flexibility of the variational approach to adapt itself

to various different settings, we are going to indicate the changes needed for a typical

non-linear situation where a low-order non-linear perturbation is considered (see [21]).
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Table 3. Inner case – u0(x) = sin(πx), T = 1/2, a0 = 1/4, Δx = Δt = 1/100 – ω = (0.2, 0.5)

– ε = 10−6. Numerical results with respect to h = (Δx, Δt) with a compact support function

in time

Δx = Δt 1/25 1/50 1/100 1/200

� CG iterates 135 192 231 361

‖uh‖L2(QT ) 2.53 × 10−1 2.58 × 10−1 2.57 × 10−1 2.61 × 10−1

‖uh‖H1(QT ) 1.301 1.336 1.337 1.352

‖fh(x, t) 1ω(x)m(t)‖L2(QT ) 1.675 2.641 2.839 2.981

‖uh(·, T )‖L2(0,1) 7.23 × 10−5 5.43 × 10−5 4.30 × 10−5 2.91 × 10−5

‖uh − uh‖L2(QT ) 3.21 × 10−5 7.31 × 10−5 5.10 × 10−5 1.58 × 10−5

Eh(uh) 4.12 × 10−7 3.34 × 10−7 4.16 × 10−7 2.36 × 10−7

Figure 9. (Colour online) Inner case – u0(x) = sin(πx). Control acting on ω = (0.2, 0.5) – ε = 10−6

– log10(Eh(u
n
h) (dashed line) and log10(‖gnh‖A) (full line) versus the iteration n of the CG algorithm.

Namely, we will look at the problem of finding a control w, so that the solution of the

problem ⎧⎪⎨
⎪⎩

ut − (a(x)ux)x + F(u) = 0, (x, t) ∈ QT ,

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = 0, u(1, t) = w(t), t ∈ (0, T )

(6.1)

will comply with u(x, T ) = 0 for all x ∈ (0, 1). System (6.1) is known to be controllable,

uniformly with respect to the data u0 and T if the nonlinear function F(s) grows slower

than s log3/2(1 + |s|) as |s| → +∞ (we refer to [13] and also to [6]). Therefore, our

approximation scheme can be used in such situations where controllability is known

to hold. To our knowledge, the numerical approximation of controls in that nonlinear
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Figure 10. (Colour online) Inner case – u0(x) = sin(πx). Solution in uh ∈ Ah along QT .

Figure 11. (Colour online) Inner case – u0(x) = sin(πx). Control fh(x, t) 1ω(x)m(t) along QT .

context has been only addressed recently in [9, 10] using linearization and fixed point

arguments.

The procedure for such non-linear system is similar. We define the corrector associated

with u, through the problem

⎧⎪⎨
⎪⎩

ut − vtt − (a(x)(ux + vx))x + F(u) = 0, (x, t) ∈ QT ,

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = 0, t ∈ (0, T ),

(6.2)

while the error functional E is still defined by (2.3). Because of controllability, we know

that the problem of minimizing the error is well-posed, and so we can go on to explore a
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×

Figure 12. (Colour online) Inner case – u0(x) = sin(πx). Iso-values of the corrector vh along QT .

descent procedure for E. We obtain the first derivative of E given by

< E ′(u), U >= −
∫∫

QT

(
Utv + a(x)Uxvx + (F ′(u) · U)v

)
dx dt, ∀U ∈ A0,

leading to the characterization of the corrector v associated with any optimal u (assumed

to exist in A) ⎧⎪⎨
⎪⎩

vt + (a(x)vx)x + F ′(u)v = 0, (x, t) ∈ QT ,

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = a(1)vx(1, t) = 0, t ∈ (0, T ).

Once again, the solution of this system vanishes in QT so that the minimizer of E is a

solution of the non-linear heat equation (6.1).

As we have mentioned earlier, even if we are not able to show the well-posedness of

the minimization corrector problem, the decrease of the error to zero is a sure indication

that the problem is being, at least approximately, controlled. Let us simply mention that,

in the conjugate gradient algorithm, the function gn in the steepest descent step is the

solution of the linear formulation∫∫
QT

(
gnt φt + a(x)gnxφx

)
dx dt = −

∫∫
QT

(
vnφt + a(x)vnxφx + F ′(un)vnφ

)
dx dt, ∀φ ∈ A0.

We consider here the function F given by

F(s) = −αs logp(1 + |s|), α = 5, p = 1.4.

Clearly, F belongs to C1(�) and we have F ′(s) = −α[logp(1+ |s|)+p logp−1(1+ |s|))|s|/(1+

|s|)).
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,,,,

Figure 13. (Colour online) Non-linear case – u0(x) = 3 sin(πx) – F(s) = −5s log1.4(1+|s|) – T = 1/2,

a0 = 1/4, Δx = Δt = 1/100 – log10(Eh(u
n
h)) (dashed line) and log10(‖gnh‖A) (full line) versus the

iteration n of the CG algorithm.

We take u0(x) = 3 sin(πx), the other data are kept unchanged. This non-linear term

prevents the diffusion of the heat solution in time, that is, the L2-norm ‖u(·, t)‖L2(0,1)

increases with respect to t: in the uncontrolled situation, we get a norm ‖u(·, T )‖L2(0,1) �
1010 to be compared with ‖u(·, T )‖L2(0,1) ≈ 2.05 × 10−1 for the linear case. The situation

is therefore much more difficult than the linear one. However, our approach allows to

drive the solution in a closed neighbourhood of zero: the a posteriori error that we get is

‖uh(·, T )‖L2(0,1) ≈ 1.92 × 10−3. Figure 13 depicts the evolution of Eh(u
n
h) and the residual

‖gnh‖A (in log10 scale) with respect to the iteration of the algorithm.

The control that we obtain is still oscillating along the time and has a much larger

amplitude (compared with the linear situation), specially near t = 0, so as to avoid

the blow up of the solution (see Figure 14 (left)). Note that we have used the compact

support function c(t) = sin2(πt/T ) so that uh is smooth near T . The non-linearity increases

slightly the number of iterations, here 2, 788, to reach the same threshold, ε = 10−5. We

also plot the corrector vh in QT (see Figure 14 (right)) and the iso-values of the solution

uh (see Figure 15). For larger values of α, the algorithm does not converge anymore.

Similar phenomena are observed for smaller larger values of ‖y0‖L∞(0,1). We also obtain

convergence results for the case F(s) = −5|s| log(1 + |s|), more critical than the previous

situation since f is non-positive. The number of iterations is greater (6, 883) as well as the

L2(ΣT )-norm of the control. Similar remarks hold for ‘more’ non-linear function such as

F(s) = α|s|p, p ∈ � or F(s) = α exp(s), provided that α or ‖y0‖L2(0,1) be small enough.

7 Reducing the norm of the control

By minimizing the error functional E defined by (2.3), we do not control any norm, in

particular the L2-norm, of the trace of the solution on ΣT . From the practical viewpoint,
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×

Figure 14. (Colour online) Non-linear case – u0(x) = 3 sin(πx). Control acting on x = 0 –

ε = 10−5. Solution in uh ∈ Ah (left) and corrector vh (right) along QT . Eh(u
n=2 788
h ) ≈ 3.33 × 10−6,

‖gn=2 788
h ‖A ≈ 9.89 × 10−6 and ‖uh(·, T )‖L2(0,1) ≈ 1.92 × 10−3.

Figure 15. (Colour online) Non-linear case – u0(x) = 3 sin(πx). Control acting on x = 0 –

ε = 10−5– iso-values of uh ∈ Ah along QT .

it is interesting to minimize such norm. A possibility is to take advantage of the fact

that the method allows to obtain non-trivial controlled solutions in A with null initial

condition u0, that is, solutions in A0. Suppose a family {uk}k∈[1,N] of N elements in A0 is

given. Then for any αn ∈ �, n = 1 · · ·N and any u ∈ A,

uN(x, t) = u(x, t) +

N∑
k=1

αkuk(x, t), (x, t) ∈ QT

still belongs, in the linear situation of Section 2, to A. The minimization of ‖uN(1, t)‖L2(0,T )

is then reduced to a quadratic minimization on {αk}k=1,N . The method that we propose to
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Figure 16. (Colour online) u0(x) = sin(πx) – T = 1/2, a0 = 1/4, Δx = Δt = 1/100. Trace of uNh
(full line) and of uh (dashed line) along ΣT .

construct the family {uk}k∈[1,N] is as follows: We first compute N elements vk , k = 1, · · · , N
in A0 using the conjugate gradient algorithm with initial guesses u0

k(x, t) = x sin(kπt/T )2.

Then we orthogonalize these elements using the Gram–Schmidt procedure with the scalar

product associated with A:

uk = vk −
k−1∑
n=1

< vk, un >A un.

Figure 16 shows the trace of uN ∈ A along ΣT obtained with N = 10 as well as the

trace of u ∈ A corresponding to u0(x) = sin(πx)(1 − t/T )2 (see Figure 2). We obtain

‖uNh ‖L2(ΣT ) ≈ 0.981 lower than ‖uh‖L2(ΣT ) ≈ 1.392. Larger values of N, which require a

finer mesh in time so as to capture the oscillating functions sin(mπt/T ), do not allow a

significant additional reduction of the L2(ΣT )-norm.

This constructive approach that allows to jump from a local minimum of E to another

one does not apply for the non-linear situation given in Section 6. On the other hand,

the more flexible approach that consists to minimize at the same time the error functional

E and the L2-norm of the trace with respect to u does not lead to satisfactory results,

as it depends too much on the initial guess u0. In that respect, a possible strategy could

be to initialize the CG algorithm with an approximate control obtained from the dual

approach (see [4]). Nevertheless, since the set {u ∈ A, E(u) = 0} is convex, we may apply

the Uzawa-type method (see, for instance, [15]) and minimize over A ×� the Lagrangian

L(u, λ) =
1

2
‖u(1, t)‖2

L2(0,T ) + λE(u).

The real λ is thus the multiplier corresponding to the constraint E(u) = 0. Starting from
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any λ0 ∈ �, the algorithm aims to define a sequence of pair (uk, λk) ∈ A × �, k � 0

according to the following two steps:

• Compute uk such that L(uk, λk) � L(v, λk), ∀v ∈ A.

• Compute λk+1 := λk + ρE(uk), ρ > 0.

The first step is performed using the gradient method developed in Sections 2 and 4, the

functional E being replaced by the functional L(·, λk). First experiments lead to satisfactory

results and will be given in a distinct work.

8 Concluding remarks

The variational approach that we discussed here to construct numerical controls is very

different in nature from the usual one [4,29] which makes use of dual variable to deal with

the constraint u(·, T ) = 0. In the context of parabolic equations, this difference is significant

because the variational approach avoids the approximation of singular functional spaces

and therefore ill-posed problems. Here the problem is elliptic and leads to standard

and well-posed formulations. A quantitative comparison with the dual approach for the

boundary situation remains however to be done.

The method extends to any target – trajectory for the heat equation – to higher

dimensions, and to any system for which a controllability result is known. In particular,

we may consider the heat equation with zero-order term and address – as we have

written in Section 6 – the controllability of semi-linear heat equations in a different form

compared with linearization and fixed point arguments. It has been also used successfully

for the Stokes problem [28].

It is also remarkable to note that this variational approach allows to solve inverse

problems. Let us mention, in particular, the highly ill-posed backward heat problem which

consists to determine the solution of the heat equation at time t = 0 from the solution uT
at any positive time T (we refer to [17]). It suffices to define the functional spaces A and

A0 respectively as follows : A = {u ∈ H1(QT ), u(0, t) = u(1, t) = 0, u(x, T ) = uT (x), (x, t) ∈
QT } and A0 = {u ∈ H1(QT ), u(0, t) = u(1, t) = 0, u(x, T ) = 0, (x, t) ∈ QT }. We plan to

analyse this situation in the future.
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