Cathelicidins are antimicrobial peptides produced by humans and animals in response to various pathogenic microbes. Crotalicidin (Ctn), a cathelicidin-related vipericidin from the South American Crotalus durissus terrificus rattlesnake's venom gland, and its fragments have demonstrated antimicrobial and antifungal activity, similarly to human cathelicidin LL-37. In order to provide templates for the development of modern trypanocidal agents, the present study evaluated the antichagasic effect of these four peptides (Ctn, Ctn[1-14], Ctn[15-34] and LL-37). Herein, Ctn and short derived peptides were tested against the epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi Y strain (benznidazole-resistant strain) and cytotoxicity in mammalian cells was evaluated against LLC-MK2 lineage cells. Ctn inhibited all T. cruzi developmental forms, including amastigotes, which is implicated in the burden of infection in the chronic phase of Chagas disease. Moreover, Ctn showed a high selective index against trypomastigote forms (>200). Ctn induced cell death in T. cruzi through necrosis, as determined by flow cytometry analyses with specific molecular probes and morphological alterations, such as loss of membrane integrity and cell shrinkage, as observed through scanning electron microscopy. Overall, Ctn seems to be a promising template for the development of antichagasic agents.