A topological space X is said to be somewhat normal provided that for each open cover is a normal cover of X. We show that a completely regular somewhat normal space need not be normal, thereby answering a question of W. M. Fleischman. We note that a collectionwise normal somewhat normal space need not be almost 2-fully normal, as had previously been asserted, and that neither the perfect image nor the perfect preimage of a somewhat normal space has to be somewhat normal.