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UNIFORM PARACOMPACTNESS AND UNIFORM 
PARA-LINDELÔFNESS 

BY 

O. T. ALAS 

ABSTRACT. Relations between uniform paracompactness and uni­
form para-Lindelôfness of a uniform space and its uniform weight are 
established. 

1. Notations and definitions. Let (X, °\i) be a uniform space. All uniform spaces 
(X, °lt) are assumed to be completely regular Hausdorff spaces, and their topologies are 
the associated ones with the uniformity °U. 

DEFINITION 1. The uniform weight of{X, °!l) is the smallest cardinal number m such 
that °U has a basis of cardinality m. It will be denoted by w(°U). 

DEFINITION 2. (X, °U) is uniformly paracompact if for each open cover ^%ofX there 
is an open cover cê', which refines it, and U E °U such that each U[x] intersects at most 
finitely many members ofW, where x varies in X. 

DEFINITION 3. (X, °\l) is uniformly par a-Linde lof if for each open cover <§ of X there 
is an open cover <§' ofX, which refines it, and U E °U so that each U[x] intersects at 
most countably many members of%\ where x varies in X. 

DEFINITION 4. Let (fs)ses be a partition of unity of(X, °U). This partition is uniformly 
locally finite if there is U E °\l so that each U[x] intersects at most finitely many sets 
/ ; ' ( [ 0 , 1]). where s ES andx<EX. 

DEFINITION 5. A topological space Y is p-compact (where p is an infinite cardinal 
number) if every discrete closed subset of Y has cardinality less than p. 

A cardinal number is assumed to be the set of all ordinals less than it. 
In a topological space Y, A denotes the closure of the subset A of Y. 

2. Main results. The study of uniform paracompactness and uniform para-
Lindelofness were developed by Rice ([5]) and Hohti ([2]) for metric spaces. (In this 
case the uniformity is the associated with the metric.) Here we will consider general 
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uniform spaces. Some of our results may be viewed as generalizations of theorems of 
Rice and Hohti. 

LEMMA 1. If{X, °\i) is uniformly par'acompact, then it is complete with respect to °U. 

LEMMA 2. If(X, °U) is uniformly para-Lindelôf space, then X is paracompact. 

PROOF. Let <§ be an open covering of X, (S' be an open refinement of ^ and U E °\l 
so that each U[x] intersects at most countably many members of ^ ' . On the other hand, 
let % be a locally finite open cover of X which refines {£/[JC]|JC E X}. (The existence 
of ^ is a consequence of the proof of A. H. Stone's theorem on full normality [4].) 

For each C E % let fti,c, • •, ftn,G> . . . be members of ^ whose union contains C. 
Now, for each n — 1, 2, 3 , . . . , {C D ftn,G|C £ ^} is locally finite family of open 
subsets of X and, varying n on N, we get a a-locally finite open refinement of (S, and 
the result follows from E. Michael's characterization of paracompactness ([3]). 

Next we are going to construct a special kind of set that will be useful in the proofs 
of theorems 1 and 3 below. 

CONSTRUCTION. Let (X, °\i) be a non-discrete uniformly paracompact (respectively 
uniformly para-Lindelôf) u(°\i) = m. 

First let us assume that m > K0 and let B be a discrete closed subset of X of cardinality 
m, ^ = {ilb\b E B) be a discrete family of open sets such that b E ïlh, Vb E B and 
let U E °U so that each £/[JC] intersects at most finitely many members of ^ (or 
countably many, respectively; X is paracompact by virtue of lemma 2.) 

Let U% E °U so that U^.°U^ C £/ and let sî denote the class of all subsets A of 5 
verifying 

U*[a] H £/Ja'] = 0 if A, a' E A, Û * <i\ 

Consider sî ordered by inclusion. By Zorn's lemma ,s# has a maximal element A^ and 

Notice that if m = K0 there is a metric J on X and °U is the uniformity subordinated 
to d. If there is no natural number n = 1, 2 , . . . so that there is an infinite collection 
of pairwise disjoint open balls of radius \/n, then (X, d) is separable and thus Lindelôf. 
Furthermore, (X, °U) is uniformly para-Lindelôf. 

THEOREM 1. The collection of points of a uniformly paracompact space {X, °U) that 
admit no compact neighborhood is m-compact, where m is the uniform weight of^ïL. 

PROOF. The case m = a0 was proved by Rice in [5]. 
Let F be the collection of all points of X which admit no compact neighborhood. F 

is closed and if F is not m-compact, there is a closed discrete subset A, with cardinality 
m, and U E °U so that the U[a], with a E A, are pairwise disjoint. Let {Uj\i < m} be 
a uniform basis of °U. Put A = {a\i < m) and for each i < m let Vt be a closed 
neighborhood of a{ contained in £/[«,] H (Pi £/,[«/]) and let T, be an open cover of V, 
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which has no finite subcover of V,. Put 

T = U T, U [X\\J V,}; 
Km 1 Km J 

there is no U' E °U such that each U'[y] is contained in the union of finitely many 
members of T , which contradicts the uniform paracompactness. 

COROLLARY. If G is a topological group, Û is the right uniformity of G and (G,°\l) 
is uniformly paracompact, then G is locally compact or G is m-compact, where m is 
the uniform weight of°\i. 

REMARK. Any locally compact topological group is uniformly paracompact with 
respect to its right uniformity. 

THEOREM 2. (X, °\i) is uniformly paracompact if and only if every open cover ofX 
has a uniformly locally finite partition of unity subordinate to it. 

THEOREM 3. The collection of points of an uniformly para-Lindelof space (X, °\l) 
which admit no Lindelof neighborhood is m-compact, where m is the uniform weight 
of<U. 

PROOF. The proof is analogous to that of theorem 1, with minor modifications; 
remember that X is paracompact. 

REMARK. Let m be an infinite cardinal number and let X be a paracompact topological 
space which is m-compact. Then one of the two properties below is verifiable: 

1) every closed discrete subset of X has cardinality less than cf(m) (= cofinality of 
m); or 

2) for each closed discrete subset F of cardinality cf(m) there is A C F, with 
cardinality of A less than cf(m) and a cardinal p < m such that each point of F — A 
has a /^-compact neighborhood. 

Indeed, let F be a closed discrete subset of X with cardinality cf(m). Put 7 = cf(m) 
and let (m/),<7 be an increasing family of cardinals less than m and so that S/<7m/ = 
m. Chose x0 E F with no m0-compact neighborhood (if there is no such x0 then put A 
= 0 and/? = m0); now choosexx E.F — {x0} with no mrcompact neighborhood (if there 
is no suchxj put A = {x0} and/7 = mi). Assume that for some 6 < 7 we have constructed 
(*/),•<e so that they are pairwise distinct and xt has no m,-compact neighborhood. Let us 
construct xB; choose xB E F — {xt\i < 6} with no me-compact neighborhood (if this is 
not possible put and A = {xj\i < 9} and p = mH). This process ends before cf(m), 
otherwise we have a family of pairwise distinct elements, (JC,),<7, and each JC,- has no 
mrcompact neighborhood. Let (Vi)i<1 be a discrete family of closed sets, where each 
Vj is a neighborhood of JC,. SO choose a discrete closed subset F, of V; with cardinality 
m,. Then U,<7F/ will be closed discrete subset of X of cardinality m, which is 
impossible. 
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3. Question. Referee's question: Suppose that (X, °U) is uniformly paracompact and 
m is the least cardinality of a base for any uniformity compatible with X. Is there a 
uniformity °U* compatible with X such that (X, °U*) is uniformly paracompact and 
i/(°H*) = ml 

The answer is no. But an inequality may be proved; instead of w(°U*) = m we have 
w(°U*) ^ AW®. For locally compact spaces the answer is affirmative. 

Let X be a paracompact space and £7̂  be its universal uniformity (the finest uni­
formity compatible withX). It is immediate that (X, U%) is uniformly paracompact. We 
consider now two metrizable space Q (the rationals with the usual topology) and UN 

(with the product topology). By virtue of Baire's theorem and lemma 1 there is no 
uniformity compatible with Q, w(°U) = K0, and such that (Q, °U) is uniformly para­
compact. On the other hand, there is no uniformity °\l compatible with UN, with u(°\L) 
= K0, such that (UN, °U) is uniformly paracompact by theorem 1. This second example 
shows that even for complete metrizable spaces the answer is no. 

Before proving theorems 4 and 5 let us recall that if X is a paracompact space then 
the sets 

U Y x Y\C E <ê], 
Y<EC J 

where % is either the set of all open covers of X, or the set of all locally finite open 
covers of X, are basis for the universal uniformity of X. 

Let S be a collection of open covers of X. For each D E 2) let (Dn) be a fixed 
sequence of open covers of X, so that D0 = D and Dn+] A-refines Dn, n = 0, 1, 2 , . . . 
Put 

3 ' = {Dn\D G 3 ; n = 0, 1, 2 , . . .} 

and define 2)" as the set of all "finite intersections" of members of 2)'. (If Ax , . . . , As 

belong to 2)' then 

A, n ... n AS = {x, n ... n xs\xt e A„ / = 1,... ,s) 

is a finite intersection). 
Then {UYEM Y x Y\M E 2)"} is a base of a uniformity %/, (maybe not compatible 

with X) on X. 

THEOREM 4. Let (X, °U) be a locally compact uniformly paracompact space and let 
m be the least cardinality of a base for any uniformity compatible with X. Then there 
is a uniformity °U* compatible with X such that w(°U*) = m. 

PROOF. Let °ll, be a compatible uniformity with w(°U,) = m (and 26, a base of this 
uniformity with |26i | = m) and let (c€„) be a sequence of locally finite open covers of 
X (whose members have compact closures) such that each %n+\ A-refines %n. 

Denote by °U* the uniformity whose base is 

°U fl ( U YXY)\GiiE%9n=\9 2,, 
K6%, 
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and the proof is completed. 

THEOREM 5. Let (X, °U) be a uniformly paracompact space and let m be the least 
cardinality of a base for any uniformity compatible with X. If the set of points ofX with 
no compact neighborhood is m-compact, then there is a uniformity °U* compatible with 
X such that «(°U*) ^ m®. 

PROOF. Let aU1 be an uniformity compatible with X such that w(°lli) = m and let F 
be the set of points of X with no compact neighborhood. Furthermore, fix a base Soi 
of °Ui with |28i| = m. It follows that, for each °ll E Soi, {°U[*] |* E F} is an open cover 
of F; fix a subcover of cardinality < m. The union of these subcovers when °U varies 
in 261 is a "base" (in X) for the topology of the subspace F. Let sa. denote the set of all 
open covers of F by members of this "base" such that the cardinality of the cover is 
< m. If F = X, then the set {UY<=A Y x Y\A E si] is a base of the finest uniformity 
compatible with X and the cardinality of this set is ^ ra~. 

Assume X\F =£ 0. For each A E si, put £lA = UY<=A Y and let %A be an open cover 
of X\ÇlA by sets with compact closures. It follows that A U %A is an open cover of X. 

Put 2) = {A U %A | A E si] and consider % (constructed before) and let °U* be the 
uniformity generated by ^ and °lli; °U* is compatible with X. 

(X, °U*) is uniformly paracompact. Indeed, let % be a locally finite open cover of 
X and ^ i a locally finite open cover of X each member of which intersects only finitely 
many members of <€. There is A E sJ that refines {fl E c€, | H D F ^ 0}, let D E 2)' 
be a A-refinement of A U %*, then G\l=UYeDYxY belongs to %> (and hence to °U*). 
Fix x E X; if °U[x] is contained in some member of %A, it has compact closure and 
intersects only finitely many members of %\ on the other hand, if °U[JC] is contained in 
some member of A (hence is contained in some member of %) and intersects only 
finitely many members of c€, by hypothesis. 

Finally we will show two results on locally compact metrizable spaces. 
1) A locally compact metric space (X, d) need not be uniformly paracompact with 

respect to the metric uniformity associated to d. As a modification of Rice's example 
([5], p. 361) there is a locally compact metric space (X, d) which is not uniformly 
para-Lindelôf with respect to the metric uniformity associated to d. Let Y be an 
uncountable set and put X = ]0, l[xy with the following metric d 

r\ if r ir s 

d{{r, y), (s, z)) = j r if r = s and y =£ z 

L 0 otherwise 

X is a discrete topological space and no open ball is countable (hence it is not uniformly 
para-Lindelôf with respect to the metric uniformity associated to d). 

2) A locally compact metrizable Lindelôf space X has a metric d compatible with the 
topology so that (X, d) is uniformly paracompact. Indeed, let (X^, d%) be a metric space 
so that X^ is the (one point) Alexandroff compactification of X. Consider the 
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product space R x X^ (where U are the reals with the usual metric); then R x X ^ 
is uniformly paracompact and X is homeomorph to the subspace {(t, y) E R x 
X*\td(y, °°) = 1}, which is closed in U x X^ (and hence uniformly paracompact). 
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