We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main objective of the present paper is to present a version of the Tannaka–Krein type reconstruction theorems: if $F:{\mathcal B}\to {\mathcal C}$ is an exact faithful monoidal functor of tensor categories, one would like to realize ${\mathcal B}$ as category of representations of a braided Hopf algebra $H(F)$ in ${\mathcal C}$. We prove that this is the case iff ${\mathcal B}$ has the additional structure of a monoidal ${\mathcal C}$-module category compatible with F, which equivalently means that F admits a monoidal section. For Hopf algebras, this reduces to a version of the Radford projection theorem. The Hopf algebra is constructed through the relative coend for module categories. We expect this basic result to have a wide range of applications, in particular in the absence of fiber functors, and we give some applications. One particular motivation was the logarithmic Kazhdan–Lusztig conjecture.
We prove a constructive existence theorem for abelian envelopes of non-abelian monoidal categories. This establishes a new tool for the construction of tensor categories. As an example we obtain new proofs for the existence of several universal tensor categories as conjectured by Deligne. Another example constructs interesting tensor categories in positive characteristic via tilting modules for ${\rm SL}_2$.
In the present paper we use the theory of exact completions to study categorical properties of small setoids in Martin-Löf type theory and, more generally, of models of the Constructive Elementary Theory of the Category of Sets, in terms of properties of their subcategories of choice objects (i.e., objects satisfying the axiom of choice). Because of these intended applications, we deal with categories that lack equalisers and just have weak ones, but whose objects can be regarded as collections of global elements. In this context, we study the internal logic of the categories involved, and employ this analysis to give a sufficient condition for the local cartesian closure of an exact completion. Finally, we apply this result to show when an exact completion produces a model of CETCS.
Analogous results for the compact open topology have long been established. We also give an example to show that the $\left( \text{Qno} \right)$ hypothesis on both $E$ and $F$ is necessary.
This paper deals with the projective objects in the category of all Z-frames, where the latter is a common generalization of different types of frames. The main result obtained here is that a Z-frame is E-projective if and only if it is stably Z-continuous, for a naturally arising collection E of morphisms.
The notion of nuclear object in an autonomous category is studied. It is shown that the full subcategory determined by the nuclear objects is also autonomous.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.