We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let K be a non-Archimedean valued field with valuation ring R. Let $C_\eta $ be a K-curve with compact-type reduction, so its Jacobian $J_\eta $ extends to an abelian R-scheme J. We prove that an Abel–Jacobi map $\iota \colon C_\eta \to J_\eta $ extends to a morphism $C\to J$, where C is a compact-type R-model of J, and we show this is a closed immersion when the special fiber of C has no rational components. To do so, we apply a rigid-analytic “fiberwise” criterion for a morphism to extend to integral models, and geometric results of Bosch and Lütkebohmert on the analytic structure of $J_\eta $.
We apply Angehrn-Siu-Helmke’s method to estimate basepoint freeness thresholds of higher dimensional polarized abelian varieties. We showed that a conjecture of Caucci holds for very general polarized abelian varieties in the moduli spaces
$\mathcal {A}_{g, l}$
with only finitely many possible exceptions of primitive polarization types l in each dimension g. We improved the bound of basepoint freeness thresholds of any polarized abelian
$4$
-folds and simple abelian
$5$
-folds.
We first provide a detailed proof of Kato’s classification theorem of log p-divisible groups over a Noetherian Henselian local ring. Exploring Kato’s idea further, we then define the notion of a standard extension of a classical finite étale group scheme (resp. classical étale p-divisible group) by a classical finite flat group scheme (resp. classical p-divisible group) in the category of finite Kummer flat group log schemes (resp. log p-divisible groups), with respect to a given chart on the base. These results are then used to prove that log p-divisible groups are formally log smooth. We then study the finite Kummer flat group log schemes $T_n(\mathbf {M}):=H^{-1}(\mathbf {M}\otimes _{{\mathbb Z}}^L{\mathbb Z}/n{\mathbb Z})$ (resp. the log p-divisible group $\mathbf {M}[p^{\infty }]$) of a log 1-motive $\mathbf {M}$ over an fs log scheme and show that they are étale locally standard extensions. Lastly, we give a proof of the Serre–Tate theorem for log abelian varieties with constant degeneration.
Let V be a smooth quasi-projective complex surface such that the first three logarithmic plurigenera
$\overline P_1(V)$
,
$\overline P_2(V)$
and
$\overline P_3(V)$
are equal to 1 and the logarithmic irregularity
$\overline q(V)$
is equal to
$2$
. We prove that the quasi-Albanese morphism
$a_V\colon V\to A(V)$
is birational and there exists a finite set S such that
$a_V$
is proper over
$A(V)\setminus S$
, thus giving a sharp effective version of a classical result of Iitaka [12].
We define két abelian schemes, két 1-motives and két log 1-motives and formulate duality theory for these objects. Then we show that tamely ramified strict 1-motives over a discrete valuation field can be extended uniquely to két log 1-motives over the corresponding discrete valuation ring. As an application, we present a proof to a result of Kato stated in [12, §4.3] without proof. To a tamely ramified strict 1-motive over a discrete valuation field, we associate a monodromy pairing and compare it with Raynaud’s geometric monodromy.
In this article, I give a crystalline characterization of abelian varieties amongst the class of smooth projective varieties with trivial tangent bundles in characteristic $p>0$. Using my characterization, I show that a smooth, projective, ordinary variety with trivial tangent bundle is an abelian variety if and only if its second crystalline cohomology is torsion-free. I also show that a conjecture of KeZheng Li about smooth projective varieties with trivial tangent bundles in characteristic $p>0$ is true for smooth projective surfaces. I give a new proof of a result by Li and prove a refinement of it. Based on my characterization of abelian varieties, I propose modifications of Li’s conjecture, which I expect to be true.
We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups.
Voevodsky has conjectured that numerical equivalence and smash-equivalence coincide for algebraic cycles on any smooth projective variety. Building on work of Vial and Kahn–Sebastian, we give some new examples of varieties where Voevodsky's conjecture is verified.
We test R. van Luijk’s method for computing the Picard group of a K3 surface. The examples considered are the resolutions of Kummer quartics in ℙ3. Using the theory of abelian varieties, the Picard group may be computed directly in this case. Our experiments show that the upper bounds provided by van Luijk’s method are sharp when sufficiently many primes are used. In fact, there are a lot of primes that yield a value close to the exact one. However, for many but not all Kummer surfaces V of Picard rank 18, we have for a set of primes of density at least 1/2.
We compute the rational Chow groups of supersingular abelian varieties and some other related varieties, such as supersingular Fermat varieties and supersingular $K3$ surfaces. These computations are concordant with the conjectural relationship, for a smooth projective variety, between the structure of Chow groups and the coniveau filtration on the cohomology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.