Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-08T17:21:53.721Z Has data issue: false hasContentIssue false

1 - Sounding the solar cycle with helioseismology: Implications for asteroseismology

Published online by Cambridge University Press:  05 December 2013

William J. Chaplin
Affiliation:
University of Birmingham
Pere L. Pallé
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
César Esteban
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Introduction

My brief for the IAC Winter School was to cover observational results on helioseismology, flagging where possible implications of those results for the asteroseismic study of solar-type stars. My desire to make such links meant that I concentrated largely on results for low angular-degree (low-l) solar p modes, in particular results derived from “Sun-as-a-star” observations (which are, of course, most instructive for the transfer of experience from helioseismology to asteroseismology). The lectures covered many aspects of helioseismology – modern helioseismology is a diverse field. In these notes, rather than discuss each aspect to a moderate level of detail, I have instead made the decision to concentrate on one theme, that of “sounding” the solar activity cycle with helioseismology. I cover the topics from the lectures and I also include some new material, relating both to the lecture topics and to other aspects I did not have time to cover. Implications for asteroseismology are developed and discussed throughout.

The availability of long time series data on solar-type stars, courtesy of the NASA Kepler Mission (Chaplin et al., 2010; Gilliland et al., 2010) and the French-led CoRoT satellite (Appourchaux et al., 2008), is now making it possible to “sound” stellar cycles with asteroseismology. The prospects for such studies have been considered in some depth (Chaplin et al., 2007a, 2008a; Metcalfe et al., 2007; Karoff et al., 2009, e.g.), and in the last year the first convincing results on stellar-cycle variations of the p-mode frequencies of a solar-type star (the F-type star HD49933) were reported by García et al. (2010).

Type
Chapter
Information
Asteroseismology , pp. 1 - 31
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anguera Gubau, M., Palle, P.L., Perez Hernandez, F., Regulo, C., and Roca Cortes, T. 1992. The low L solar p-mode spectrum at maximum and minimum solar activity. A & A, 255(Feb.), 363–72.Google Scholar
Appourchaux, T. 1998. The structure of the solar core: an observer's point of view. Pages 37–46 of: S., Korzennik (ed.), Structure and Dynamics of the Interior of the Sun and Sun-like Stars. ESA Special Publication, vol. 418.
Appourchaux, T., and Chaplin, W. J. 2007. On understanding the meaning of l = 2 and 3 p-mode frequencies as measured by various helioseismic instruments. A & A, 469(July), 1151–4.Google Scholar
Appourchaux, T., Michel, E., Auvergne, M., Baglin, A., Toutain, T., Baudin, F., Benomar, O., Chaplin, W.J., Deheuvels, S., Samadi, R., Verner, G.A., Boumier, P., García, R.A., Mosser, B., Hulot, J.-C., Ballot, J., Barban, C., Elsworth, Y., Jiménez-Reyes, S.J., Kjeldsen, H., Régulo, C., and Roxburgh, I. W. 2008. CoRoT sounds the stars: p-mode parameters of Sun-like oscillations on HD 49933. A & A, 488(Sept.), 705–14.Google Scholar
Ballot, J., Appourchaux, T., Toutain, T., and Guittet, M. 2008. On deriving p-mode parameters for inclined solar-like stars. A & A, 486(Aug.), 867–75.Google Scholar
Ballot, J., García, R.A., and Lambert, P. 2006. Rotation speed and stellar axis inclination from p modes: how CoRoT would see other suns. MNRAS, 369(July), 1281–6.Google Scholar
Basri, G., Walkowicz, L.M., Batalha, N., Gilliland, R.L., Jenkins, J., Borucki, W.J., Koch, D., Caldwell, D., Dupree, A.K., Latham, D.W., Meibom, S., Howell, S., and Brown, T. 2010. Photometric variability in kepler target stars: the sun among stars-a first look. ApJ, 713(Apr.), L155–L159.Google Scholar
Basu, S., and Mandel, A. 2004. Does solar structure vary with solar magnetic activity?ApJ, 617(Dec.), L155–L158.Google Scholar
Bohm-Vitense, E. 2007. Chromospheric activity in G and K main-sequence stars, and what it tells us about stellar dynamos. ApJ, 657(Mar.), 486–93.Google Scholar
Broomhall, A.-M., Chaplin, W.J., Elsworth, Y., and New, R. 2011. Solar-cycle variations of large frequency separations of acoustic modes: implications for asteroseismology. MNRAS, 413(June), 2978–86.Google Scholar
Broomhall, A.-M., Chaplin, W.J., Elsworth, Y., Fletcher, S.T., and New, R. 2009. Is the current lack of solar activity only skin deep?ApJ, 700(Aug.), L162–L165.Google Scholar
Chaplin, W. J. 2004 (Oct.). Low-degree helioseismology: the state of play on its silver anniversary. Pages 34–43 of: D., Danesy (ed), SOHO 14 Helio- and Asteroseismology: toward a Golden Future. ESA Special Publication, vol. 559.
Chaplin, W.J., Appourchaux, T., Elsworth, Y., García, R.A., Houdek, G., Karoff, C., Metcalfe, T.S., Molenda-Żakowicz, J., Monteiro, M. J. P. F. G., Thompson, M.J., Brown, T.M., Christensen-Dalsgaard, J., Gilliland, R.L., Kjeldsen, H., Borucki, W.J., Koch, D., Jenkins, J.M., Ballot, J., Basu, S., Bazot, M., Bedding, T.R., Benomar, O., Bonanno, A., Brandão, I. M., Bruntt, H., Campante, T.L., Creevey, O.L., Di Mauro, M.P., Doğan, G., Dreizler, S., Eggenberger, P., Esch, L., Fletcher, S.T., Frandsen, S., Gai, N., Gaulme, P., Handberg, R., Hekker, S., Howe, R., Huber, D., Korzennik, S.G., Lebrun, J.C., Leccia, S., Martic, M., Mathur, S., Mosser, B., New, R., Quirion, P.-O., Régulo, C., Roxburgh, I.W., Salabert, D., Schou, J., Sousa, S.G., Stello, D., Verner, G.A., Arentoft, T., Barban, C., Belkacem, K., Benatti, S., Biazzo, K., Boumier, P., Bradley, P.A., Broomhall, A.-M., Buzasi, D.L., Claudi, R.U., Cunha, M.S., D'Antona, F., Deheuvels, S., Derekas, A., García Hernández, A., Giampapa, M.S., Goupil, M.J., Gruberbauer, M., Guzik, J.A., Hale, S.J., Ireland, M.J., Kiss, L.L., Kitiashvili, I.N., Kolenberg, K., Korhonen, H., Kosovichev, A.G., Kupka, F., Lebreton, Y., Leroy, B., Ludwig, H.-G., Mathis, S., Michel, E., Miglio, A., Montalbian, J., Moya, A., Noels, A., Noyes, R.W., Pallié, P. L., Piau, L., Preston, H.L., Roca Cortés, T., Roth, M., Sato, K.H., Schmitt, J., Serenelli, A.M., Silva Aguirre, V., Stevens, I.R., Suárez, J.C., Suran, M.D., Trampedach, R., Turck-Chièze, S., Uytterhoeven, K., Ventura, R., and Wilson, P. A. 2010. The asteroseismic potential of kepler: first results for solar-type stars. ApJ, 713(Apr.), L169–L175.Google Scholar
Chaplin, W.J., Elsworth, Y., Isaak, G.R., Lines, R., McLeod, C.P., Miller, B.A., and New, R. 1998. An analysis of solar p-mode frequencies extracted from BiSON data: 1991-1996. MNRAS, 300(Nov.), 1077–90.Google Scholar
Chaplin, W.J., Appourchaux, T., Elsworth, Y., Isaak, G.R., Miller, B.A., and New, R. 2000. Source of excitation of low-l solar p modes: characteristics and solar-cycle variations. MNRAS, 314(May), 75–86.Google Scholar
Chaplin, W.J., Appourchaux, T., Elsworth, Y., Isaak, G.R., and New, R. 2001. The phenomenology of solar-cycle-induced acoustic eigenfrequency variations: a comparative and complementary analysis of GONG, BiSON and VIRGO/LOI data. MNRAS, 324(July), 910–16.Google Scholar
Chaplin, W.J., Appourchaux, T., Elsworth, Y., Isaak, G.R., Miller, B.A., and New, R. 2004a. On comparing estimates of low-l solar p-mode frequencies from Sun-as-a-star and resolved observations. A & A, 424(Sept.), 713–17.Google Scholar
Chaplin, W.J., Elsworth, Y., Isaak, G.R., Miller, B.A., and New, R. 2004b. The solar cycle as seen by low-l p-mode frequencies: comparison with global and decomposed activity proxies. MNRAS, 352, 1102–08.Google Scholar
Chaplin, W.J., Appourchaux, T., Elsworth, Y., Isaak, G.R., Miller, B.A., New, R., and Toutain, T. 2004c. Solar p-mode frequencies at l = 2: what do analyses of unresolved observations actually measure?A & A, 416, 341–51.Google Scholar
Chaplin, W.J., Elsworth, Y., Miller, B.A., New, R., and Verner, G. A. 2005. Impact of the solar activity cycle on frequency separation ratios in helioseismology. ApJ, 635(Dec.), L105–L108.Google Scholar
Chaplin, W.J., Elsworth, Y., Houdek, G., and New, R. 2007a. On prospects for sounding activity cycles of Sun-like stars with acoustic modes. MNRAS, 377, 17–29.Google Scholar
Chaplin, W.J., Elsworth, Y., Miller, B.A., Verner, G.A., and New, R. 2007b. Solar p-mode frequencies over three solar cycles. ApJ, 659, 1749–60.Google Scholar
Chaplin, W.J., Houdek, G., Appourchaux, T., Elsworth, Y., New, R., and Toutain, T. 2008a. Challenges for asteroseismic analysis of Sun-like stars. A & A, 485, 813–22.Google Scholar
Chaplin, W.J., Elsworth, Y., New, R., and Toutain, T. 2008b. Distortion of the p-mode peak profiles by the solar-cycle frequency shifts: do we need to worry?MNRAS, 384, 1668–74.Google Scholar
Christensen-Dalsgaard, J., and Berthomieu, G. 1991. Theory of solar oscillations, 401–78.
de Toma, G., White, O.R., Chapman, G.A., Walton, S.R., Preminger, D.G., and Cookson, A. M. 2004. Solar cycle 23: an anomalous cycle?ApJ, 609(July), 1140–52.Google Scholar
Dziembowski, W.A., and Goode, P. R. 2005. Sources of oscillation frequency increase with rising solar activity. ApJ, 625(May), 548–55.Google Scholar
Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P., and New, R. 1990. Variation of low-order acoustic solar oscillations over the solar cycle. Nature, 345(May), 322–4.Google Scholar
Elsworth, Y., Howe, R., Isaak, G.R., McLeod, C.P., Miller, B.A., New, R., Speake, C.C., and Wheeler, S. J. 1994. Solar p-mode frequencies and their dependence on solar activity recent results from the BISON network. ApJ, 434(Oct.), 801–06.Google Scholar
Fletcher, S.T., Broomhall, A.-M., Salabert, D., Basu, S., Chaplin, W.J., Elsworth, Y., García, R.A., and New, R. 2010. A seismic signature of a second dynamo?ApJ, 718(July), L19–L22.Google Scholar
García, R.A., Mathur, S., Salabert, D., Ballot, J., Régulo, C., Metcalfe, T.S., and Baglin, A. 2010. CoRoT reveals a magnetic activity cycle in a sun-like star. Science, 329(Aug.), 1032.Google Scholar
Gelly, B., Lazrek, M., Grec, G., Ayad, A., Schmider, F.X., Renaud, C., Salabert, D., and Fossat, E. 2002. Solar p-modes from 1979 days of the GOLF experiment. A & A, 394(Oct.), 285–97.Google Scholar
Gilliland, R.L., Brown, T.M., Christensen-Dalsgaard, J., Kjeldsen, H., Aerts, C., Appourchaux, T., Basu, S., Bedding, T.R., Chaplin, W.J., Cunha, M.S., De Cat, P., De Ridder, J., Guzik, J.A., Handler, G., Kawaler, S., Kiss, L., Kolenberg, K., Kurtz, D.W., Metcalfe, T.S., Monteiro, M. J. P. F. G., Szabó, R., Arentoft, T., Balona, L., Debosscher, J., Elsworth, Y.P., Quirion, P.-O., Stello, D., Suárez, J.C., Borucki, W.J., Jenkins, J.M., Koch, D., Kondo, Y., Latham, D.W., Rowe, J.F., and Steffen, J. H. 2010. Kepler asteroseismology program: introduction and first results. PASP, 122(Feb.), 131–43.Google Scholar
Gizon, L., and Solanki, S. K. 2003. Determining the inclination of the rotation axis of a sun-like star. ApJ, 589(June), 1009–19.Google Scholar
González Hernández, I., Howe, R., Komm, R., and Hill, F. 2010. Meridional circulation during the extended solar minimum: another component of the torsional oscillation?ApJ, 713(Apr.), L16–L20.Google Scholar
Gough, D. O. 1990. Comments on helioseismic inference. Pages 283–318 of: Y., Osaki and H., Shibahashi (ed), Progress of Seismology of the Sun and Stars. Lecture Notes in Physics, vol. 367, Springer Verlag, Berlin.
Houdek, G., Chaplin, W.J., Appourchaux, T., Christensen-Dalsgaard, J., Däppen, W., Elsworth, Y., Gough, D.O., Isaak, G.R., New, R., and Rabello-Soares, M. C. 2001. Changes in convective properties over the solar cycle: effect on p-mode damping rates. MNRAS, 327(Oct.), 483–7.Google Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R., Schou, J., and Thompson, M. J. 2009. A note on the torsional oscillation at solar minimum. ApJ, 701 (Aug.), L87–L90.Google Scholar
Howe, R., Komm, R.W., and Hill, F. 2002. Localizing the solar cycle frequency shifts in global p-modes. ApJ, 580(Dec.), 1172–87.Google Scholar
Jiménez-Reyes, S.J., Régulo, C., Palle, P.L., and Roca Cortes, T. 1998. Solar activity cycle frequency shifts of low-degree p-modes. A & A, 329(Jan.), 1119–24.Google Scholar
Jiménez-Reyes, S.J., Corbard, T., Palle, P.L., Roca Cortes, T., and Tomczyk, S. 2001. Analysis of the solar cycle and core rotation using 15 years of Mark-I observations: 1984-1999. I. The solar cycle. A & A, 379(Nov.), 622–33.Google Scholar
Jiménez-Reyes, S.J., García, R.A., Chaplin, W.J., and Korzennik, S. G. 2004. On the spatial dependence of low-degree solar p-mode frequency shifts from full-disk and resolved-Sun observations. ApJ, 610(July), L65–L68.Google Scholar
Jiménez-Reyes, S.J., Chaplin, W.J., Elsworth, Y., García, R.A., Howe, R., Socas-Navarro, H., and Toutain, T. 2007. On the Variation of the Peak Asymmetry of Low-l Solar p Modes. ApJ, 654(Jan.), 1135–45.Google Scholar
Karoff, C., Metcalfe, T.S., Chaplin, W.J., Elsworth, Y., Kjeldsen, H., Arentoft, T., and Buzasi, D. 2009. Sounding stellar cycles with Kepler. I. Strategy for selecting targets. MNRAS, 399(Oct.), 914–23.Google Scholar
Knaack, R., Fligge, M., Solanki, S.K., and Unruh, Y. C. 2001. The influence of an inclined rotation axis on solar irradiance variations. A & A, 376(Sept.), 1080–1089.Google Scholar
Komm, R.W., Howe, R., and Hill, F. 2000. Solar-cycle changes in gong p-mode widths and amplitudes 1995-1998. ApJ, 531 (Mar.), 1094–1108.Google Scholar
Komm, R., Howe, R., and Hill, F. 2002. Localizing width and energy of solar global p-modes. ApJ, 572(June), 663–73.Google Scholar
Libbrecht, K.G., and Woodard, M. F. 1990. Solar-cycle efects on solar oscillation frequencies. Nature, 345(June), 779–82.Google Scholar
Metcalfe, T.S., Dziembowski, W.A., Judge, P.G., and Snow, M. 2007. Asteroseismic signatures of stellar magnetic activity cycles. MNRAS, 379(July), L16–L20.Google Scholar
Metcalfe, T.S., Basu, S., Henry, T.J., Soderblom, D.R., Judge, P.G., Knolker, M., Mathur, S., and Rempel, M. 2010. Discovery of a 1.6 year magnetic activity cycle in the exoplanet host star i horologii. ApJ, 723(Nov.), L213–L217.Google Scholar
Moreno-Insertis, F., and Solanki, S. K. 2000. Distribution of magnetic flux on the solar surface and low-degree p-modes. MNRAS, 313(Apr.), 411–22.Google Scholar
Otíí Floranes, H., Christensen-Dalsgaard, J., and Thompson, M. J. 2005. The use of frequency-separation ratios for asteroseismology. MNRAS, 356(Jan.), 671–9.Google Scholar
Pallíe, P.L., Ríegulo, C., and Roca Cortíes, T. 1989. Solar cycle induced variations of the low L solar acoustic spectrum. A & A, 224(Oct.), 253–8.Google Scholar
Pallíe, P.L., Ríegulo, C., and Roca Cortíes, T. 1990a. Frequencies, line widths, and Splittings of Low-Degree Solar p-Modes. Pages 189–195 of: Y., Osaki and H., Shibahashi (ed), Progress of Seismology of the Sun and Stars. Lecture Notes in Physics. Springer Verlag, Berlin.
Pallíe, P.L., Ríegulo, C., and Roca Cortíes, T. 1990b. The Spectrum of Solar p-Modes and the Solar Activity Cycle. Pages 129–134 of Y., Osaki and H., Shibahashi (ed), Progress of Seismology of the Sun and Stars. Lecture Notes in Physics. Springer Verlag, Berlin.
Rabello-Soares, M.C., Korzennik, S.G., and Schou, J. 2008. Variations of the solar acoustic high-degree mode frequencies over solar cycle 23. Advances in Space Research, 41, 861–867.Google Scholar
Ritzwoller, M.H., and Lavely, E. M. 1991. A unified approach to the helioseismic forward and inverse problems of diferential rotation. ApJ, 369(Mar.), 557–66.Google Scholar
Roxburgh, I. W. 2005. The ratio of small to large separations of stellar p-modes. A & A, 434(May), 665–9.Google Scholar
Roxburgh, I.W., and Vorontsov, S. V. 2003. The ratio of small to large separations of acoustic oscillations as a diagnostic of the interior of solar-like stars. A & A, 411(Nov.), 215–20.Google Scholar
Salabert, D., Fossat, E., Gelly, B., Kholikov, S., Grec, G., Lazrek, M., and Schmider, F. X. 2004. Solar p modes in 10 years of the IRIS network. A & A, 413(Jan.), 1135–42.Google Scholar
Salabert, D., García, R.A., Palle, P.L., and Jiménez-Reyes, S. J. 2009. The onset of solar cycle 24: what global acoustic modes are telling us. A & A, 504(Sept.), L1–L4.Google Scholar
Sheeley, N. R. Jr. 2010 (June). What's so peculiar about the cycle 23/24 solar minimum? Pages 3–13 of: S. R., Cranmer, J. T., Hoeksema, and J. L., Kohl (ed), SOHO-23: Understanding a Peculiar Solar Minimum. Astronomical Society of the Pacific Conference Series, vol. 428.
Tapping, K.F., and Detracey, B. 1990. The origin of the 10.7 CM flux. Sol. Phys., 127(June), 321–32.Google Scholar
Toutain, T., and Wehrli, C. 1997. First Results from the SPM of the VIRGO/SOHO Experiment. Pages 254–258 of: B., Schmieder, J. C. del Toro, Iniesta, and M., Vazquez (ed), 1st Advances in Solar Physics Euroconference. Advances in Physics of Sunspots. Astronomical Society of the Pacific Conference Series, vol. 118.
Tripathy, S.C., Jain, K., Hill, F., and Leibacher, J. W. 2010. Unusual trends in solar p-mode frequencies during the current extended minimum. ApJ, 711 (Mar.), L84–L88.Google Scholar
Verner, G.A., Chaplin, W.J., and Elsworth, Y. 2006. BiSON data show change in solar structure with magnetic activity. ApJ, 640(Mar.), L95–L98.Google Scholar
Watson, F., Fletcher, L., Dalla, S., and Marshall, S. 2009. Modelling the longitudinal asymmetry in sunspot emergence: the role of the Wilson Depression. Sol. Phys., 260(Nov.), 5–19.Google Scholar
Woodard, M.F., and Noyes, R. W. 1985. Change of solar oscillation eigenfrequencies with the solar cycle. Nature, 318(Dec.), 449–50.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×