Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-04T22:03:31.781Z Has data issue: false hasContentIssue false

10 - Nonlinear optical infrared and terahertz frequency conversion

Published online by Cambridge University Press:  05 August 2015

Larry R. Dalton
Affiliation:
University of Washington
Peter Günter
Affiliation:
Swiss Federal University (ETH), Zürich
Mojca Jazbinsek
Affiliation:
Rainbow Photonics AG, Zürich
O-Pil Kwon
Affiliation:
Ajou University, Republic of Korea
Philip A. Sullivan
Affiliation:
Montana State University
Get access

Summary

Nonlinear optical frequency conversion

As discussed in Chapter 2, there are many different possibilities for converting optical frequencies to other frequencies or even static fields in second-order nonlinear optical materials, such as sum- and difference-frequency generation, including second-harmonic generation and optical rectification (see Fig. 2.2). The big advantage of organic nonlinear optical materials compared with inorganic ones is high nonlinear optical figures-of-merit, reflecting their almost purely electronic response to external fields, as discussed in Section 3.2. Because of this, the best organic materials exhibit considerably higher second-order nonlinear optical susceptibilities compared with the best inorganic materials. This is illustrated in Fig. 10.1, which shows figures-of-merit for second-harmonic generation d2/n3 versus transparency range for various organic and inorganic crystals. One can clearly see that the nonlinear optical figures-of-merit of organic materials can be several orders of magnitude higher than in the best inorganic materials. This makes organic materials extremely attractive for nonlinear optical applications.

In the 1980s, the most attractive frequency conversion applications included frequency doubling because of the above advantages and because of the interest in generating blue or green coherent light by using widely available (near-)infrared laser sources, such as diode lasers [1], Ti:sapphire lasers, and Nd:YAG lasers. The early organic materials considered were transparent in the visible. Later on, organic materials with much higher nonlinear optical susceptibilities were developed, but these are no longer transparent in the visible (see Fig. 10.1) and therefore second-harmonic generation with these materials is of limited applicability. At present, the most attractive frequency-conversion applications with organic materials include infrared and far-infrared light generation, as well as generation of electromagnetic waves in the THz frequency range. In this section we mainly describe infrared frequency conversion possibilities with the best organic crystals, such as DAST, DSTMS, and OH1 (see Chapter 6 for details on these materials), and in the next section we look at THz generation with these and other organic materials.

Type
Chapter
Information
Organic Electro-Optics and Photonics
Molecules, Polymers and Crystals
, pp. 228 - 249
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Gunter, P., Asbeck, P. M., and Kurtz, S. K., Appl. Phys. Lett. 35, 461–463 (1979).Google Scholar
[2] Bosshard, C., Bösch, M., Liakatas, I.,Jäger, M., and Günter, P., in Nonlinear Optical Effects and Materials, Günter, P., Ed., Berlin Heidelberg New York, Springer Series in Optical Science, Vol. 72 (2000), p. 163.CrossRefGoogle Scholar
[3] Wyncke, B. and Brehat, F., J. Phys. B 22, 363 (1989).Google Scholar
[4] Meier, U., Bosch, M., Bosshard, C., and Gunter, P., Synth. Met. 109, 19–22 (2000).Google Scholar
[5] Oudar, J. L. and Chemla, D. S., J. Chem. Phys. 66, 2664 (1977).Google Scholar
[6] Mutter, L., Brunner, F. D. J., Yang, Z., Jazbinsek, M., and Gunter, P., J. Opt. Soc. Am. B 24, 2556–2561 (2007).Google Scholar
[7] Auston, D. H., Cheung, K. P., and Smith, P. R., Appl. Phys. Lett. 45, 284–286 (1984).Google Scholar
[8] Tonouchi, M., Nat. Photon. 1, 97–105 (2007).Google Scholar
[9] Sutherland, R. L., Handbook of Nonlinear Optics, New York, Dekker, (2003).CrossRefGoogle Scholar
[10] Brunner, F. D. J., Kwon, O. P., Kwon, S. J., et al., Opt. Express 16, 16496–16508 (2008).Google Scholar
[11] Rainbow Photonics AG, www.rainbowphotonics.com
[12] Kawase, K., Mizuno, M., Sohma, S., et al., Opt. Lett. 24, 1065 (1999).Google Scholar
[13] Kawase, K., Hatanaka, T., Takahashi, H., et al., Opt. Lett. 25, 1714–1716 (2000).Google Scholar
[14] Taniuchi, T., Shikata, J., and Ito, H., Electron. Lett. 36, 1414–1416 (2000).Google Scholar
[15] Kawase, K., Shikata, J., and Ito, H., Solid-State Mid-Infrared Laser Sources 89, 397–423 (2003).CrossRefGoogle Scholar
[16] Taniuchi, T., Okada, S., and Nakanishi, H., J. Appl. Phys. 95, 5984 (2004).Google Scholar
[17] Taniuchi, I., Adachi, H., Okada, S., Sasaki, T., and Nakanishi, H., Electron. Lett. 40, 549 (2004).Google Scholar
[18] Taniuchi, I., Adachi, H., Okada, S., Sasaki, T., and Nakanishi, H., Electron. Lett. 40, 549–551 (2004).Google Scholar
[19] Taniuchi, T., Ikeda, S., Okada, S., and Nakanishi, H., Jpn. J. Appl. Phys. 2 44, L652 (2005).Google Scholar
[20] Takahashi, Y., Adachi, H., Taniuchi, T., et al., J. Photochem. Photobiol. A 183, 247 (2006).Google Scholar
[21] Satoh, T., Toya, Y., Yamamoto, S., et al., J. Opt. Soc. Am. B 27, 2507–2511 (2010).Google Scholar
[22] Tang, M., Minamide, H., Wang, Y., et al., Opt. Express 19, 779–786 (2011).Google Scholar
[23] Koichi, M., Miyamoto, K., Ujita, S., et al., Opt. Express 19, 18523–18528 (2011).Google Scholar
[24] Liu, J. and Merkt, F., Appl. Phys. Lett. 93, 131105 (2008).Google Scholar
[25] Liu, J., Schmutz, H., and Merkt, F., J. Mol. Spectrosc. 256, 61–63 (2009).Google Scholar
[26] Uchida, H., Sugiyama, T., Suizu, K., Osumi, T., and Kawase, K., Terahertz Sci. Technol. 4, 132–136 (2011).Google Scholar
[27] Zheng, X. M., McLaughlin, C. V., Cunningham, P., and Hayden, L. M., J. Nanoelectron. Optoelectron. 2, 58–76 (2007).Google Scholar
[28] Faure, J., Tilborg, J. Van, Kaindl, R. A., and Leemans, W. P., Opt. Quantum Electron. 36, 681–697 (2004).Google Scholar
[29] Schneider, A., Neis, M., Stillhart, M., et al., J. Opt. Soc. Am. B 23, 1822 (2006).Google Scholar
[30] Schneider, A., Stillhart, M., and Gunter, P., Opt. Express 14, 5376–5384 (2006).Google Scholar
[31] Walther, M., Jensby, K., Keiding, S. R., Takahashi, H., and Ito, H., Opt. Lett. 25, 911–913 (2000).Google Scholar
[32] Kwon, O. P., Kwon, S. J., Stillhart, M., et al., Cryst. Growth Des. 7, 2517–2521 (2007).Google Scholar
[33] Brunner, F. D. J., Schneider, A., and Gunter, P., Appl. Phys. Lett. 94, 061119 (2009).Google Scholar
[34] Miyamoto, K., Ohno, S., Fujiwara, M., et al., Opt. Express 17, 14832–14838 (2009).Google Scholar
[35] Kim, P. J., Jeong, J. H., Jazbinsek, M., et al., Cryst. Eng. Comm. 13, 444–451 (2011).Google Scholar
[36] Seo, J. Y., Choi, S. B., Jazbinsek, M.et al., Cryst. Growth Des. 9, 5003–5005 (2009).Google Scholar
[37] Kim, P. J., Jeong, J. H., Jazbinsek, M.et al., Adv. Funct. Mater. 22, 200–209 (2012).Google Scholar
[38] Stillhart, M., Schneider, A., and Gunter, P., J. Opt. Soc. Am. B 25, 1914–1919 (2008).Google Scholar
[39] Zhang, X. C., Ma, X. F., Jin, Y., et al., Appl. Phys. Lett. 61, 3080–3082 (1992).Google Scholar
[40] Han, P. Y., Tani, M., Pan, F., and Zhang, X. C., Opt. Lett. 25, 675 (2000).Google Scholar
[41] Carey, J. J., Bailey, R. T., Pugh, D., et al., Appl. Phys. Lett. 81, 4335–4337 (2002).Google Scholar
[42] Kuroyanagi, K., Yanagi, K., Sugita, A.et al., J. Appl. Phys. 100, 043117 (2006).Google Scholar
[43] Kwon, E., Okada, S., and Nakanishi, H., Jpn. J. Appl. Phys. Part 2 46, L46–L48 (2007).Google Scholar
[44] Takayanagi, J., Kanamori, S., Suizu, K., et al., Opt. Express 16, 12859–12865 (2008).Google Scholar
[45] Hauri, C. P., Ruchert, C., Vicario, C., and Ardana, F., Appl. Phys. Lett. 99, 161116 (2011).Google Scholar
[46] Akiyama, K., Okada, S., Goto, Y., and Nakanishi, H., J. Cryst. Growth 311, 953–955 (2009).Google Scholar
[47] Matsukawa, T., Mineno, Y., Odani, T., et al., J. Cryst. Growth 299, 344–348 (2007).Google Scholar
[48] Kuroyanagi, K., Fujiwara, M., Hashimoto, H., et al., Jpn. J. Appl. Phys. Part 1 45, 4068–4073 (2006).Google Scholar
[49] Nahata, A., Auston, D. H., Wu, C. J., and Yardley, J. T., Appl. Phys. Lett. 67, 1358–1360 (1995).Google Scholar
[50] Sinyukov, A. M. and Hayden, L. M., Opt. Lett. 27, 55–57 (2002).Google Scholar
[51] Zheng, X. M., Sinyukov, A., and Hayden, L. M., Appl. Phys. Lett. 87, 081115 (2005).Google Scholar
[52] McLaughlin, C. V., Hayden, L. M., Polishak, B., et al., Appl. Phys. Lett. 92, 151107 (2008).Google Scholar
[53] Cunningham, P. D. and Hayden, L. M., Opt. Express 18, 23620–23625 (2010).Google Scholar
[54] Schneider, A., Biaggio, I., and Gunter, P., Appl. Phys. Lett. 84, 2229 (2004).Google Scholar
[55] Katayama, I., Akai, R., Bito, M., et al., Appl. Phys. Lett. 97, 021105 (2010).Google Scholar
[56] Wu, Q. and Zhang, X. C., Appl. Phys. Lett. 68, 1604–1606 (1996).Google Scholar
[57] Schneider, A. and Gunter, P., Appl. Phys. Lett. 90, 121125 (2007).Google Scholar
[58] Knoesel, E., Bonn, M., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 86, 340–343 (2001).Google Scholar
[59] Mickan, S. P. and Zhang, X. C., Int. J. High Speed Electron. Systems 13, 601–676 (2003).Google Scholar
[60] Wang, F., Shan, J., Islam, M. A., et al., Nat. Mater. 5, 861–864 (2006).Google Scholar
[61] Chan, W. L., Deibel, J., and Mittleman, D. M., Rep. Prog. Phys. 70, 1325–1379 (2007).Google Scholar
[62] Withayachumnankul, W., Png, G. M., Yin, X., et al., Proc. IEEE 95, 1528–1558 (2007).Google Scholar
[63] Baxter, J. B. and Guglietta, G. W., Analyt. Chem. 83, 4342–4368 (2011).Google Scholar
[64] Hoffmann, M. C. and Fueloep, J. A., J. Phys. D: Appl. Phys. 44, 083001 (2011).Google Scholar
[65] Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F., and Bonn, M., Rev. Mod. Phys. 83, 543–586 (2011).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×