Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-16T03:10:29.840Z Has data issue: false hasContentIssue false

CHAPTER 5 - Effects of Fluid Inertia

Published online by Cambridge University Press:  05 June 2012

Andras Z. Szeri
Affiliation:
University of Delaware
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashino, I. 1975 Slow motion between eccentric rotating cylindersBulletin, Japan Soc. Mech. Engrs 18 280CrossRefGoogle Scholar
Ballal, B.Rivlin, R. S. 1976 Flow of a Newtonian fluid between eccentric rotating cylindersArch. Rational Mech. Anal 62 237CrossRefGoogle Scholar
Black, H. F.Walton, M. H. 1974 Theoretical and experimental investigations of a short 360○ journal bearing in the transition superlaminar regimeJ. Mech. Eng. Sci 16 286CrossRefGoogle Scholar
Brennen, C. 1976 On the flow in an annulus surrounding a whirling cylinderJ. Fluid Mech 75 173CrossRefGoogle Scholar
Burton, R. A.Hsu, Y. C. 1974 The incompressible turbulent-thin-film short bearing with inertial effectsASME Trans., Ser. F 96 158Google Scholar
Chen, S. S.Wambsganss, M. W.Jendrzejczyk, J. 1976 Added mass and damping of a vibrating rod in confined viscous fluidsASME J. Appl. Mech 43 325CrossRefGoogle Scholar
Christie, I.Rajagopal, K. R.Szeri, A. Z. 1987 Flow of a non-Newtonian fluid between eccentric rotating cylindersIntl. J. Eng. Sci 25 1029CrossRefGoogle Scholar
Constantinescu, V. N. 1970 On the influence of inertia forces in turbulent and laminar self-acting filmsASME Journal of Lubrication Technology 92 473CrossRefGoogle Scholar
Constantinescu, V. N.Galetuse, S. 1982 Operating characteristics of journal bearing in turbulent inertial flowASME Journal of Lubrication Technology 104 173CrossRefGoogle Scholar
Coombs, J. A.Dowson, D. 1965 An experimental investigation of the effects of lubricant inertia in hydrostatic thrust bearingsProc. Inst. Mech. Eng 3 96Google Scholar
Dai, R. X.Dong, Q. M.Szeri, A. Z. 1991 Flow of variable viscosity fluid between eccentric rotating cylindersIntl. J. Non-Linear Mech 27 367CrossRefGoogle Scholar
Dai, R. X.Dong, Q. M.Szeri, A. Z. 1992 Approximations in hydrodynamic lubricationASME Journal of Tribology 114 14CrossRefGoogle Scholar
de Sampaio, P. 1991 Galerkin formulation for the incompressible Navier-Stokes equations using equal order interpolation for velocity and pressureInternat. J. Numer. Methods Engrg 31 1134CrossRefGoogle Scholar
DeBoor, C. 1978 A Practical Guide to SplinesSpringer-VerlagNew YorkCrossRefGoogle Scholar
DiPrima, R. C.Stuart, J. T. 1972 Non-local effects in the stability of flow between eccentric rotating cylindersJ. Fluid Mech 54 393CrossRefGoogle Scholar
DiPrima, R. C.Stuart, J. T. 1972 Flow between eccentric rotating cylindersASME Journal of Lubrication Technology 94 266CrossRefGoogle Scholar
El-Shafei, A.Crandall, S. H. 1991 Fluid inertia forces in squeeze, film dampers in rotating machinery and vehicle dynamicsASME DE 35 219Google Scholar
Fletcher, C. A. J. 1991 Computational Techniques for Fluid DynamicsSpringer-VerlagNew YorkCrossRefGoogle Scholar
Gourley, W. E. 1977
Grim, R. J. 1976 Squeezing flows of Newtonian filmsApp. Sci. Res 32 149CrossRefGoogle Scholar
Hamza, E. A. 1985 A fluid film squeezed between two rotating parallel plane surfacesASME Journal of Tribology 107 110CrossRefGoogle Scholar
Hashimoto, H. 1994 Viscoelastic squeeze film characteristics with inertia effects between two parallel circular plates under sinusoidal motionASME Journal of Tribology 116 161CrossRefGoogle Scholar
Hughes, T. J. R.Franca, L. P.Balestra, M. 1986 A new finite element formulation for computation fluid dynamicsComput. Methods Appl. Math. Engrg 59 85CrossRefGoogle Scholar
Jackson, J. D.Symmons, G. R. 1965 An investigation of laminar radial flow between two parallel disksAppl. Sci. Res. Sect. A 15 59CrossRefGoogle Scholar
Jones, A. F.Wilson, S. D. R. 1974 On the failure of lubrication theory in squeezing flowASME Journal of Lubrication Technology 97 101CrossRefGoogle Scholar
Kamal, M. M. 1966 Separation in the flow between eccentric rotating cylindersASME J. of Basic Engineering 88 717CrossRefGoogle Scholar
Keller, H. B. 1977 Numerical solutions of bifurcation and non-linear eigenvalue problemsApplications of Bifurcation TheoryAcademic PressNew YorkGoogle Scholar
Kim, E.Szeri, A. Z. 1997 On the combined effects of lubricant inertia and viscous dissipation in long bearingsASME Journal of Tribology 119 76CrossRefGoogle Scholar
Kulinski, E.Ostratch, S. 1967 Journal bearing velocity profiles for small eccentricity and moderate modified Reynolds numberASME J. Appl. Mech 89 16CrossRefGoogle Scholar
Kuzma, D. 1967 Fluid inertia effects in squeeze filmsApp. Sci. Res 18 15CrossRefGoogle Scholar
Launder, B. E.Leschziner, M. 1978 Flow in finite-width, thrust bearings including inertial effects, I and IIASME Trans., Ser. F 100 330Google Scholar
Livesey, J. L. 1960 Inertia effects in viscous flowsInt. J. Mech. Sci 1 81CrossRefGoogle Scholar
Modest, M. F.Tichy, J. A. 1978 Squeeze film flow in arbitrarily shaped journal bearings subject to oscillationsASME Journal of Lubrication Technology 100 323CrossRefGoogle Scholar
Mulcahy, T. M. 1980 Fluid forces on rods vibrating in finite length annular regionsASME J. Appl. Mech 47 234CrossRefGoogle Scholar
Myllerup, C. M.Hamrock, B. J. 1994 Perturbation approach to hydrodynamic lubrication theoryASME Journal of Tribology 116 110CrossRefGoogle Scholar
Ortega, J. M.Rheinboldt, W. C. 1970 Iterative Solution of Non-Linear Equations in Several VariablesAcademic PressNew YorkGoogle Scholar
Osterle, J. F.Hughes, W. F. 1958 Inertia induced cavitation in hydrostatic thrust bearingsWear 4 228CrossRefGoogle Scholar
Osterle, J. F.Chou, Y. T.Saibel, E. 1975 The effect of lubricant inertia in journal bearing lubricationASME Trans494Google Scholar
Ota, T.Yoshikawa, H.Hamasuna, M.Motohashi, T.Oi, S. 1995 Inertia effects on film rapture in hydrodynamic lubricationASME Journal of Tribology 117 685CrossRefGoogle Scholar
Reinhardt, E.Lund, J. W. 1975 The influence of fluid inertia on the dynamic properties of journal bearingsASME Trans., Ser. F 97 159Google Scholar
Reynolds, O. 1986 On the theory of lubrication and its application to Mr. Beachamp Tower's experimentsPhil. Trans. Roy. Soc 177 157CrossRefGoogle Scholar
Ritchie, G. S. 1968 On the stability of viscous flow between eccentric rotating cylindersJ. Fluid Mech 32 131CrossRefGoogle Scholar
Rosenhead, L. 1963 Laminar Boundary LayersOxford University PressGoogle Scholar
San Andres, A.Szeri, A. Z. 1985 Flow between eccentric rotating cylindersASME J. Appl. Mech 51 869CrossRefGoogle Scholar
San Andres, A.Vance, J. 1987 Force coefficients for open-ended squeeze-film dampers, executing small amplitude motions about an off-center equilibrium positionASLE Trans 30 384CrossRefGoogle Scholar
Schlichting, H. 1968 Boundary Layer TheoryLondonGoogle Scholar
Sestieri, A.Piva, R. 1982 The influence of fluid inertia in unsteady lubrication filmsASME Journal of Lubrication Technology 104 180CrossRefGoogle Scholar
Seydel, R. 1988 From Equilibrium To ChaosElsevierNew YorkGoogle Scholar
Sood, D. R.Elrod, H. G. 1974 Numerical solution of the incompressible Navier-Stokes equations in doubly-connected regionsAIAA J 12 636CrossRefGoogle Scholar
Szeri, A. Z.Adams, M. L. 1978 Laminar through flow between closely spaced rotating disksJ. Fluid Mech 86 1CrossRefGoogle Scholar
Szeri, A. Z.Al-Sharif, A. 1995 Flow between finite, steadily rotating eccentric cylindersTheoret. Comput. Fluid Dynamics 7 1CrossRefGoogle Scholar
Szeri, A. Z.Raimondi, A. A.Giron-Duarte, A. 1983 Linear force coefficients for squeeze-film dampersASME Journal of Lubrication Technology 105 326CrossRefGoogle Scholar
Szeri, A. Z.Schneider, S. J.Labbe, F.Kaufman, H. N. 1983 Flow between rotating disks. Part 1: basic flowJ. Fluid Mech 134 103CrossRefGoogle Scholar
Szeri, A. Z.Snyder, V. 2006 Convective inertia effects in wall-bounded thin film flowsMeccanica 41 473CrossRefGoogle Scholar
Tichy, J.Bou-Said, B. 1991 Hydrodynamic lubrication and bearing behavior with impulsive loadsSTLE Tribology Transactions 34 505CrossRefGoogle Scholar
Tichy, J.Modest, M. 1978 Squeeze film flow between arbitrary two-dimensional surfaces subject to normal oscillationsASME Journal of Lubrication Technology 100 316CrossRefGoogle Scholar
Tichy, J.Winer, W. 1970 Inertial considerations in parallel circular squeeze-film bearingsASME Journal of Lubrication Technology588CrossRefGoogle Scholar
Von Karman, T. 1921 Über laminare und turbuleute ReibungZAMM 1 233CrossRefGoogle Scholar
Wannier, G. 1950 A contribution to the hydrodynamics of lubricationQuart. Appl. Math 8 1CrossRefGoogle Scholar
Weinbaum, S.Lawrence, C. J.Kuang, Y. 1985 The inertial drainage of a thin fluid layer between parallel plates with a constant normal force. Part 1. Analytical solutions: inviscid and small but finite-Reynolds-number limitsJ. Fluid Mechanics 121 315Google Scholar
Wood, W. 1957 The asymptotic expansions at large Reynolds numbers for steady motion between non-coaxial rotating cylindersJ. Fluid Mech 3 159CrossRefGoogle Scholar
Yamada, Y. 1968 On the flow between eccentric cylinders when the outer cylinder rotatesJapan Soc. Mech. Engrs 45 455CrossRefGoogle Scholar
Yang, S.-M.Leal, G. 1993 Thin fluid film squeezed with inertia between two parallel plane surfacesASME Journal of Tribology 115 632CrossRefGoogle Scholar
You, H. L.Lu, S. S. 1987 Inertia effects in hydrodynamic lubrication with film ruptureASME Journal of Tribology 109 86CrossRefGoogle Scholar
Zhang, J.Ellis, J.Roberts, J. B. 1993 Observations on the nonlinear fluid forces in short cylindrical squeeze, film dampersASME Journal of Tribology 115 692CrossRefGoogle Scholar
Zienkiewicz, O. C.Woo, J. 1991 Incompressibility without tears: how to avoid restrictions of mixed formulationInternat. J. Numer. Methods Engrg 32 1189CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×