Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-05T17:01:30.327Z Has data issue: false hasContentIssue false

7 - Docking: a domesday report

from PART II - COMPUTATIONAL CHEMISTRY METHODOLOGY

Published online by Cambridge University Press:  06 July 2010

Kenneth M. Merz, Jr
Affiliation:
University of Florida
Dagmar Ringe
Affiliation:
Brandeis University, Massachusetts
Charles H. Reynolds
Affiliation:
Johnson & Johnson Pharmaceutical Research & Development
Get access

Summary

In 1085, most likely from a desire to audit his tax revenues, William the Conqueror commissioned a survey of the land and resources of the country over which he reigned. The results of that survey come down to us in two tomes, the Little Domesday and the Great Domesday, in which were recorded voluminous amounts of data concerning the land, people, buildings, and chattel throughout England. By no means was this a complete record; large swathes of urban England – London, for example – were not included, nor was there any census of church personnel or property. The Little and Great Domesday books accordingly are an odd mix of completeness and incompleteness, leaving out such large parts of English society yet cataloguing to an excruciating level of detail within the areas surveyed.

Similarly, this chapter is a complete yet incomplete survey of the docking and scoring landscape. We do not review the general principles of docking technologies; a sufficient number of such reviews have been published in peer-reviewed journals alone. Nor do we evaluate the state of the art for docking programs and scoring functions; a number of well-regarded and careful evaluations describe the current capabilities and limitations of the technology. Instead, under “Comments on the Theory of Docking” we will make explicit the connections between docking and a theory of noncovalent association.

Type
Chapter
Information
Drug Design
Structure- and Ligand-Based Approaches
, pp. 98 - 119
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

http://www.nationalarchives.gov.uk/domesday/.
Kontoyianni, M.; Madhav, P.; Suchanek, E.; Seibel, W.Theoretical and practical considerations in virtual screening: a beaten field?Curr. Med. Chem. 2008, 15, 107–116.Google Scholar
Cavasotto, C. N.; Orry, A. J. W.Ligand docking and structure-based virtual screening in drug discovery. Curr. Top. Med. Chem. 2007, 7, 1006–1014.Google Scholar
Zhong, S.; Macias, A. T.; MacKerell, A. D.. Computational identification of inhibitors of protein-protein interactions. Curr. Top. Med. Chem. 2007, 7, 63–82.Google Scholar
Sousa, S. F.; Fernandes, P. A.; Ramos, M. J.Protein-ligand docking: current status and future challenges. Proteins 2006, 65, 15–26.Google Scholar
Rester, U.Dock around the clock: current status of small molecule docking and scoring. QSAR Comb. Sci. 2006, 25, 605–615.Google Scholar
Coupez, B.; Lewis, R. A.Docking and scoring: theoretically easy, practically impossible?Curr. Med. Chem. 2006, 13, 2995–3003.Google Scholar
Mohan, V.; Gibbs, A. C.; Cummings, M. D.; Jaeger, E. P.; DesJarlais, R. L.Docking: successes and challenges. Curr. Pharm. Des. 2005, 11, 323–333.Google Scholar
Schulz-Gasch, T.; Stahl, M.Scoring functions for protein-ligand interactions: a critical perspective. Drug Disc. Today 2004, 1, 231–239.Google Scholar
Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J.Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935–949.Google Scholar
Alvarez, J. C.High-throughput docking as a source of novel drug leads. Curr. Opin. Chem. Biol. 2004, 8, 365–370.Google Scholar
Muegge, I.; Enyedy, I. J.Virtual screening for kinase targets. Curr. Med. Chem. 2004, 11, 693–707.Google Scholar
Brooijmans, N.; Kuntz, I. D.Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 2003, 335–373.Google Scholar
Glen, R. C.; Allen, S. C.Ligand-protein docking: cancer research at the interface between biology and chemistry. Curr. Med. Chem. 2003, 10, 763–777.Google Scholar
Taylor, R. D.; Jewsbury, P. J.; Essex, J. W.A review of protein-small molecule docking methods. J. Comput. Aided Mol. Des. 2002, 16, 151–166.Google Scholar
Lyne, P. D.Structure-based virtual screening: an overview. Drug Disc. Today 2002, 7, 1047–1055.Google Scholar
Shoichet, B. K.; McGovern, S. L.; Wei, B.; Irwin, J. J.Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 2002, 6, 439–446.Google Scholar
Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R.Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 2002, 47, 409–443.Google Scholar
Schneider, G.; Bohm, H. J.Virtual screening and fast automated docking methods. Drug Disc. Today 2002, 7, 64–70.Google Scholar
Abagyan, R.; Totrov, M.High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 2001, 5, 375–382.Google Scholar
Sheridan, R. P.; McGaughey, G. B.; Cornell, W. D.Multiple protein structures and multiple ligands: effects on the apparent goodness of virtual screening results. J. Comput. Aided Mol. Des. 2008, 22, 257–265.Google Scholar
McGaughey, G. B.; Sheridan, R. P.; Bayly, C. I.; Culberson, J. C.; Kreatsoulas, C.; Lindsley, S.; Maiorov, V.; Truchon, J. F.; Cornell, W. D.Comparison of topological, shape, and docking methods in virtual screening. J. Chem. Inf. Model. 2007, 47, 1504–1519.Google Scholar
Cornell, W. D.Recent evaluations of high throughput docking methods for pharmaceutical lead finding: consensus and caveats. Annu. Rep. Comp. Chem. 2006, 2, 297–323.Google Scholar
Warren, G. L.; Andrews, C. W.; Capelli, A. M.; Clarke, B.; LaLonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Wall, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S.A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49, 5912–5931.Google Scholar
Cummings, M. D.; DesJarlais, R. L.; Gibbs, A. C.; Mohan, V.; Jaeger, E. P.Comparison of automated docking programs as virtual screening tools. J. Med. Chem. 2005, 48, 962–976.Google Scholar
Perola, E.; Walters, W. P.; Charifson, P. S.A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 2004, 56, 235–249.Google Scholar
Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A.The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys. J. 1997, 72, 1047–1069.Google Scholar
Shirts, M. R.; Mobley, D. L.; Brown, S. P. Free energy calculations. In: Structure-Based Drug Design, Merz, K. M.; Ringe, D.; Reynolds, C. H., Eds. 2008, in press.
Chang, C. E.; Potter, M. J.; Gilson, M. K.Calculation of molecular configuration integrals. J. Phys. Chem. B 2003, 107, 1048–1055.Google Scholar
Kolossváry, I.Evaluation of the molecular configuration integral in all degrees of freedom for the direct calculation of conformational free energies: prediction of the anomeric free energy of monosaccharides. J. Phys. Chem. A 1997, 101(51), 9900–9905.Google Scholar
Head, M. S.; Given, J. A.; Gilson, M. K.Mining minima: direct computation of conformational free energy. J. Phys. Chem. A 1997, 101, 1609–1618.Google Scholar
Chang, C.-E.; Chen, W.; Gilson, M. K.Ligand configurational entropy and protein binding. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1534–1539.Google Scholar
Kim, R.; Skolnick, J.Assessment of programs for ligand binding affinity prediction. J. Comp. Chem. 2008, 29, 1316–1331.Google Scholar
Manetti, F.; Falchi, F.; Crespan, E.; Schenone, S.; Maga, G.; Botta, M.N-(thiazol-2-yl)-2-thiophene carboxamide derivatives as Abl inhibitors identified by a pharmacophore-based database screening of commercially available compounds. Bioorg. Med. Chem. Lett. 2008, 18, 4328–4331.Google Scholar
Olsen, L.; Pettersson, I.; Hemmingsen, L.; Adolph, H.-W.; Jørgensen, F. S.Docking and scoring of metallo-β-lactamase inhibitors. J. Comput. Aided Mol. Des. 2004, 18, 287–302.Google Scholar
Holloway, M. K.; Wai, J. M.; Halgren, T. A.; Fitzgerald, P. M. D.; Vacca, J. P.; Dorsey, B. D.; Levin, R. B.; Thompson, W. J.; Chen, J.; deSolms, J.; Gaffin, N.; Ghosh, A. K.; Giuliani, E. A.; Graham, S. L.; Guare, J. P.; Hungate, R. W.; Lyle, T. A.; Sanders, W. M.; Tucker, T. J.; Wiggins, M.; Wiscount, C. M.; Woltersdorf, O. W.; Young, S. D.; Darke, P. L.; Zugay, J. A.A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. J. Med. Chem. 1995, 38, 305–317.Google Scholar
http://www.rcsb.org/pdb/.
http://www.cas.org/products/scifindr/index.html.
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed.
http://scholar.google.com/.
Herschhorn, A.; Hizi, A.Virtual screening, identification, and biochemical characterization of novel inhibitors of the reverse transcriptase of human immunodeficiency virus type-1. J. Med. Chem. 2008, 51, 5702–5713.Google Scholar
Park, H.; Bahn, Y. J.; Jung, S. K.; Jeong, D. G.; Lee, S.-H.; Seo, I.; Yoon, T.-S.; Kim, S. J.; Ryu, S. E.Discovery of novel Cdc25 phosphatase inhibitors with micromolar activity based on the structure-based virtual screening. J. Med. Chem. 2008, 51, 5533–5541.Google Scholar
Zhong, S.; Chen, X.; Zhu, X.; Dziegielewska, B.; Bachman, K. E.; Ellenberger, T.; Ballin, J. D.; Wilson, G. M.; Tomkinson, A. E.; MacKerell, A. D.. Identification and validation of human DNA ligase inhibitors using computer-aided drug design. J. Med. Chem. 2008, 51, 4553–4562.Google Scholar
Azim, M. K.; Ahmed, W.; Khan, I. A.; Rao, N. A.; Khan, K. M.Identification of acridinyl hydrazides as potent aspartic protease inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 3011–3015.Google Scholar
Pierce, A. C.; Jacobs, M.; Stuver-Moody, C.Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. J. Med. Chem. 2008, 51, 1972–1975.Google Scholar
Yang, H.; Dou, W.; Lou, J.; Leng, Y.; Shen, J.Discovery of novel inhibitors of 11β-hydroxysteroid dehydrogenase type 1 by docking and pharmacophore modeling. Bioorg. Med. Chem. Lett. 2008, 18, 1340–1345.Google Scholar
Dhagat, U.; Carbone, V.; Chung, R. P.-T.Matsunaga, T.; Endo, S.; Hara, A.; El-Kabbani, O.A salicylic acid-based analogue discovered from virtual screening as a potent inhibitor of human 20α-hydroxysteroid dehydrogenase. Med. Chem. 2007, 3, 546–550.Google Scholar
Knox, A. J. S.; Meegan, M. J.; Sobolev, V.; Frost, D.; Zisterer, D. M.; Williams, D. C.; Lloyd, D. G.Target specific virtual screening: optimization of an estrogen receptor screening platform. J. Med. Chem. 2007, 50, 5301–5310.Google Scholar
Cozza, G.; Bonvini, P.; Zorzi, E.; Poletto, G.; Pagano, M. A.; Sarno, S.; Donella-Deana, A.; Zagotto, G.; Rosolen, A.; Pinna, L. A.; Meggio, F.; Moro, S.Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application. J. Med. Chem. 2006, 49, 2363–2366.Google Scholar
Siedlecki, P.; Garcia Boy, R.; Musch, T.; Brueckner, B.; Suhai, S.; Lyko, F.; Zielenkiewicz, P.Discovery of two novel, small-molecule inhibitors of DNA methylation. J. Med. Chem. 2006, 49, 678–683.Google Scholar
Nolan, K. A.; Timson, D. J.; Stratford, I. J.; Bryce, R. A.In silico identification and biochemical characterization of novel inhibitors of NQO1. Bioorg. Med. Chem. Lett. 2006, 16, 6246–6254.Google Scholar
Barril, X.; Brough, P.; Drysdale, M.; Hubbard, R. E.; Massey, A.; Surgenor, A.; Wright, L.Structure-based discovery of a new class of Hsp90 inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 5187–5191.Google Scholar
Zhao, L.; Brinton, R. D.Structure-based virtual screening for plant-based ERβ-selective ligands as potential preventative therapy against age-related neurodegenerative diseases. J. Med. Chem. 2005, 48, 3463–3466.Google Scholar
Mizutani, M. Y.; Itai, A.Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors. J. Med. Chem. 2004, 47, 4818–4828.Google Scholar
Lyne, P. D.; Kenny, P. W.; Cosgrove, D. A.; Deng, C.; Zabludoff, S.; Wendoloski, J. J.; Ashwell, S.Identification of compounds with nanomolar binding affinity for checkpoint kinase-1 using knowledge-based virtual screening. J. Med. Chem. 2004, 47, 1962–1968.Google Scholar
Rastelli, G.; Pacchioni, S.; Sirawaraporn, W.; Sirawaraporn, R.; Parenti, M. D.; Ferrari, A. M.Docking and database screening reveal new classes of Plasmodium falciparum dihydrofolate reductase inhibitors. J. Med. Chem. 2003, 46, 2834–2845.Google Scholar
Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; Fabbro, D.; Furet, P.Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J. Med. Chem. 2003, 46, 2656–2662.Google Scholar
Enyedy, I. J.; Lee, S.-L.; Kuo, A. H.; Dickson, R. B.; Lin, C.-L.; Wang, S.Structure-based approach for the discovery of bis-benzamidines as novel inhibitors of matriptase. J. Med. Chem. 2001, 44, 1349–1355.Google Scholar
Park, H.; Bahn, Y. J.; Jeong, D. G.; Woob, E. J.; Kwon, J. S.; Ryu, S. E.Identification of novel inhibitors of extracellular signal-regulated kinase 2 based on the structure-based virtual screening. Bioorg. Med. Chem. Lett. 2008, 18, 5372–5376.Google Scholar
Identification of BRAF inhibitors through in silico screening. J. Med. Chem. 2008, 51, 6121–6127.
Schlicker, C.; Rauch, A.; Hess, K. C.; Kachholz, B.; Levin, L. R.; Buck, J.; Steegborn, C.Structure-based development of novel adenylyl cyclase inhibitors. J. Med. Chem. 2008, 51, 4456–4464.Google Scholar
Park, H.; Jung, S.-K.; Jeong, D. G.; Ryu, S. E.; Kim, S. J.Discovery of VHR phosphatase inhibitors with micromolar activity based on structure-based virtual screening. ChemMedChem 2008, 3, 880–887.Google Scholar
Corbeil, C. R.; Englebienne, P.; Yannopoulos, C. G.; Chan, L.; Das, S. K.; Bilimoria, D.; L'Heureux, L.; Moitessier, N.Docking ligands into flexible and solvated macromolecules. 2. Development and application of FITTED 1.5 to the virtual screening of potential HCV polymerase inhibitors. J. Chem. Inf. Model. 2008, 48, 902–909.Google Scholar
Kolb, P.; Huang, D.; Dey, F.; Caflisch, A.Discovery of kinase inhibitors by high-throughput docking and scoring based on a transferable linear interaction energy model. J. Med. Chem. 2008, 51, 1179–1188.Google Scholar
Salam, N. K.; Huang, T. H-W.; Kota, B. P.; Kim, M. S.; Li, Y.; Hibbs, D. E.Novel PPAR-gamma agonists identified from a natural product library: a virtual screening, induced-fit docking and biological assay study. Chem. Biol. Drug Des. 2008, 71, 57–70.Google Scholar
Katritch, V.; Byrd, C. M.; Tseitin, V.; Dai, D.; Raush, E.; Totrov, M.; Abagyan, R.; Jordan, R.; Hruby, D. E.Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches. J. Comput. Aided Mol. Des. 2007, 21, 549–558.Google Scholar
Hu, X.; Prehna, G.; Stebbins, C. E.Targeting plague virulence factors: a combined machine learning method and multiple conformational virtual screening for the discovery of Yersinia protein kinase A inhibitors. J. Med. Chem. 2007, 50, 3980–3983.Google Scholar
Rummey, C.; Nordhoff, S.; Thiemannc, M.; Metz, G.In silico fragment-based discovery of DPP-IV S1 pocket binders. Bioorg. Med. Chem. Lett. 2006, 16, 1405–1409.Google Scholar
Irwin, J. J.; Raushel, F. M.; Shoichet, B. K.Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 2005, 44, 12316–12328.Google Scholar
Hancock, C. N.; Macias, A.; Lee, E. K.; Yu, S. Y.; MacKerell, A. D.; Shapiro, P.Identification of novel extracellular signal-regulated kinase docking domain inhibitors. J. Med. Chem. 2005, 48, 4586–4595.Google Scholar
Toledo-Sherman, L.; Deretey, E.; Slon-Usakiewicz, J. J.; Ng, W.; Dai, J.-R.; Estelle Foster, J.; Redden, P. R.; Uger, M. D.; Liao, L. C.; Pasternak, A.; Reid, N.Frontal affinity chromatography with MS detection of EphB2 tyrosine kinase receptor. 2. Identification of small-molecule inhibitors via coupling with virtual screening. J. Med. Chem. 2005, 48, 3221–3230.Google Scholar
Forino, M.; Jung, D.; Easton, J. B.; Houghton, P. J.; Pellecchia, M.Virtual docking approaches to protein kinase B inhibition. J. Med. Chem. 2005, 48, 2278–2281.Google Scholar
Mozziconacci, J.-C.; Arnoult, E.; Bernard, P.; Do, Q. T.; Marot, C.; Morin-Allory, L.Optimization and validation of a docking-scoring protocol and application to virtual screening for COX-2 inhibitors. J. Med. Chem. 2005, 48, 1055–1068.Google Scholar
Chen, L.; Gui, C.; Luo, X.; Yang, Q.; Guenther, S.; Scandella, E.; Drosten, C.; Bai, D.; He, X.; Ludewig, B.; Chen, J.; Luo, H.; Yang, Y.; Yang, Y.; Zou, J.; Thiel, V.; Chen, K.; Shen, J.; Shen, X.; Jiang, H.Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J. Virol. 2005, 79, 7095–7103.Google Scholar
Li, C.; Xu, L.; Wolan, D. W.; Wilson, I. A.; Olson, A. J.Virtual screening of human 5-aminoimidazole-4-carboxamide ribonucleotide transformylase against the NCI diversity set by use of Autodock to identify novel nonfolate inhibitors. J. Med. Chem. 2004, 47, 6681–6690.Google Scholar
Ferrari, A. M.; Wei, B. Q.; Costantino, L.; Shoichet, B. K.Soft docking and multiple receptor conformations in virtual screening. J. Med. Chem. 2004, 47, 5076–5084.Google Scholar
Thurmond, R. L.; Beavers, M. P.; Cai, H.; Meduna, S. P.; Gustin, D. J.; Sun, S.; Almond, H. J.; Karlsson, L.; Edwards, J. P.Nonpeptidic, noncovalent inhibitors of the cysteine protease cathepsin S. J. Med. Chem. 2004, 47, 4799–4801.Google Scholar
Schapira, M.; Raaka, B. M.; Das, S.; Fan, L.; Totrov, M.; Zhou, Z.; Wilson, S. R.; Abagyan, R.; Samuels, H. H.Discovery of diverse thyroid hormone receptor anagonists by high-throughput docking. Proc. Natl. Acad. Sci. USA 2003, 100, 7354–7359.Google Scholar
Wu, S. Y.; McNae, I.; Kontopidis, G.; McClue, S. J.; McInnes, C.; Stewart, K. J.; Wang, S.; Zheleva, D. I.; Marriage, H.; Lane, D. P.; Taylor, P.; Fischer, P. M.; Walkinshaw, M. D.Discovery of a novel family of CDK inhibitors with the program LIDAEUS structural basis for ligand-induced disordering of the activation loop. Structure 2003, 11, 399–410.Google Scholar
Liu, H.; Li, Y.; Song, M.; Tan, X.; Cheng, F.; Zheng, S.; Shen, J.; Luo, X.; Ji, R.; Yue, J.; Hu, G.; Jiang, H.; Chen, K.Structure-based discovery of potassium channel blockers from natural products: virtual screening and electrophysiological assay testing. Chemistry 2003, 10, 1103–1113.Google Scholar
Doman, T. N.; McGovern, S. L.; Witherbee, B. J.; Kasten, T. P.; Kurumbail, R.; Stallings, W. C.; Connolly, D. T.; Shoicht, B. K.Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem. 2002, 45, 2213–2221.Google Scholar
Paiva, A. M.; Vanderwall, D. E.; Blanchard, J. S.; Kozarich, J. W.; Williamson, J. M.; Kelly, T. M.Inhibitors of dihydropicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis. Biochim. Biophys. Acta 2001, 1545, 67–77.Google Scholar
Enyedy, I. J.; Ling, Y.; Nacro, K.; Tomita, Y.; Wu, X.; Cao, Y.; Guo, R.; Li, B.; Zhu, X.; Huang, Y.; Long, Y.-Q.; Roller, P. P.; Yang, D.; Wang, S.Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J. Med. Chem. 2001, 44, 4313–4234.Google Scholar
Iwata, Y.; Arisawa, M.; Hamada, R.; Kita, Y.; Mizutani, M. Y.; Tomioka, N.; Itai, A.; Miyamoto, S.Discovery of novel aldose reductase inhibitors using a protein structure-based approach: 3D-database search followed by design and synthesis. J. Med. Chem. 2001, 44, 1718–1728.Google Scholar
Gradler, U.; Gerber, H.-D.; Goodenough-Lashua, D. A. M.; Garcia, G. A.; Ficner, R.; Reuter, K.; Stubbs, M. T.; Klebe, G.A new target for shigellosis: rational design and crystallographic studies of inhibitors of tRNA-guanine transglycosylase. J. Mol. Biol. 2001, 306, 455–467.Google Scholar
Pang, Y.-P.; Xub, K.; Kollmeyer, T. M.; Perola, E.; McGrathe, W. J.; Greene, D. T.; Mangele, W. F.Discovery of a new inhibitor lead of adenovirus proteinase: steps toward selective, irreversible inhibitors of cysteine proteinases. FEBS Lett. 2001, 502, 93–97.Google Scholar
Hopkins, S. C.; Vale, R. D.; Kuntz, I. D.Inhibitors of kinesin activity from structure-based computer screening. Biochemistry 2000, 39, 2805–2814.Google Scholar
Freymann, D. M.; Wenck, M. A.; Engel, J. C.; Feng, J.; Focia, P. J.; Eakin, A. E.; Craig, S. P.. Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi. Chem. Biol. 2000, 7, 957–968.Google Scholar
Wang, J.-L.; Liu, D.; Zhang, Z.-J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z.Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA 2000, 97, 7124–7129.Google Scholar
Liu, J.-S.; Cheng, W.-C.; Wang, H.-J.; Chen, Y.-C.; Wang, W.-C.Structure-based inhibitor discovery of Helicobacter pylori dehydroquinate synthase. Biochem. Biophys. Res. Commun. 2008, 373, 1–7.Google Scholar
Mukherjee, P.; Desai, P.; Ross, L.; White, E. L.; Avery, M. A.Structure-based virtual screening against SARS-3CLpro to identify novel non-peptidic hits. Bioorg. Med. Chem. 2008, 16, 4138–4149.Google Scholar
Park, H.; Jung, S.-K.; Jeong, D. G.; Ryu, S. E.; Kim, S. J.Discovery of novel PRL-3 inhibitors based on the structure-based virtual screening. Bioorg. Med. Chem. Lett. 2008, 18, 2250–2255.Google Scholar
Ruiz, F. M.; Gil-Redondo, R.; Morreale, A.; Ortiz, A. R.; Fabrega, C.; Bravo, J.Structure-based discovery of novel non-nucleosidic DNA alkyltransferase inhibitors: virtual screening and in vitro and in vivo activities. J. Chem. Inf. Model. 2008, 48, 844–854.Google Scholar
Babaoglu, K.; Simeonov, A.; Irwin, J. J.; Nelson, M. E.; Feng, B.; Thomas, C. J.; Cancian, L.; Costi, M. P.; Maltby, D. A.; Jadhav, A.; Inglese, J.; Austin, C. P.; Shoichet, B. K.Comprehensive mechanistic analysis of hits from high-throughput and docking screens against β-lactamase. J. Med. Chem. 2008, 51, 2502–2511.Google Scholar
Park, H.; Hwang, K. Y.; Oh, K. H.; Kim, Y. H.; Lee, J. Y.; Kim, K.Discovery of novel α-glucosidase inhibitors based on the virtual screening with the homology-modeled protein structure. Bioorg. Med. Chem. 2008, 16, 284–292.Google Scholar
Montes, M.; Braud, E.; Miteva, M. A.; Goddard, M.-L.; Mondesert, O.; Kolb, S.; Brun, M.-P.; Ducommun, B.; Garbay, C.; Villoutreix, B. O.Receptor-based virtual ligand screening for the identification of novel CDC25 phosphatase inhibitors. J. Chem. Inf. Model. 2008, 48, 157–165.Google Scholar
Agarwal, S. M.; Jain, R.; Bhattacharya, A.; Azam, A.Inhibitors of Escherichia coli serine acetyltransferase block proliferation of Entamoeba histolytica trophozoites. Int. J. Parasitol. 2008, 38, 137–141.Google Scholar
Hellmuth, K.; Grosskopf, S.; Lum, C. T.; Wuertele, M.; Roeder, N.; Kries, J. P.; Rosario, M.; Rademann, J.; Birchmeier, W.Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Proc. Natl. Acad. Sci. USA 2008, 105, 7275–7280.Google Scholar
Betzi, S.; Restouin, A.; Opi, S.; Arold, S. T.; Parrot, I.; Guerlesquin, F.; Morelli, X.; Collette, Y.Protein-protein interaction inhibition (2P2I) combining high throughput and virtual screening: application to the HIV-1 nef protein. Proc. Natl. Acad. Sci. USA 2007, 104, 19256–19261.Google Scholar
Wang, G.; Huang, N.; Meng, Z.; Liu, Q.Identification of novel inhibitors of the streptogramin group A acetyltransferase via virtual screening. Yaoxue Xuebao 2007, 42, 47–53.Google Scholar
Luzhkov, V. B.; Selisko, B.; Nordqvist, A.; Peyrane, F.; Decroly, E.; Alvarez, K.; Karlen, A.; Canard, B.; Aaqvist, J.Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap (nucleoside-2′O)-methyltransferase. Bioorg. Med. Chem. 2007, 15, 7795–7802.Google Scholar
Ragno, R.; Mai, A.; Simeoni, S.; Caroli, A.; Caffarelli, E.; Neve, P.; Gioia, U.; Bozzoni, I.Structure-based drug discovery of XendoU inhibitors through multi-docking virtual screening. In: Frontiers in CNS and Oncology Medicinal Chemistry, Vol. COMC-063. Washington, DC: American Chemical Society; 2007.
Park, H.; Kim, Y.-J.; Hahn, J.-S.A novel class of Hsp90 inhibitors isolated by structure-based virtual screening. Bioorg. Med. Chem. Lett. 2007, 17, 6345–6349.Google Scholar
Ostrov, D. A.; Hernandez Prada, J. A.; Corsino, P. E.; Finton, K. A.; Le, N.; Rowe, T. C.Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antibac. Agents Chemother. 2007, 51, 3688–3698.Google Scholar
Szewczuk, L. M.; Saldanha, S. A.; Ganguly, S.; Bowers, E. M.; Javoroncov, M.; Karanam, B.; Culhane, J. C.; Holbert, M. A.; Klein, D. C.; Abagyan, R.; Cole, P. A.De novo discovery of serotonin N-acetyltransferase inhibitors. J. Med. Chem. 2007, 50, 5330–5338.Google Scholar
Liao, C.; Karki, R. G.; Marchand, C.; Pommier, Y.; Nicklaus, M. C.Virtual screening application of a model of full-length HIV-1 integrase complexed with viral DNA. Bioorg. Med. Chem. Lett. 2007, 17, 5361–5365.Google Scholar
Srivastava, S. K.; Dube, D.; Kukshal, V.; Jha, A. K.; Hajela, K.; Ramachandran, R.NAD+-dependent DNA ligase (Rv3014c) from Mycobacterium tuberculosis: novel structure-function relationship and identification of a specific inhibitor. Proteins 2007, 69, 97–111.Google Scholar
Brooks, W. H.; McCloskey, D. E.; Daniel, K. G.; Ealick, S. E.; III; Secrist, , J. A.; Waud, W. R.; Pegg, A. E.; Guida, W. C.In silico chemical library screening and experimental validation of a novel 9-aminoacridine based lead-inhibitor of human S-adenosylmethionine decarboxylase. J. Chem. Inf. Model. 2007, 47, 1897–1905.Google Scholar
Spannhoff, A.; Machmur, R.; Heinke, R.; Trojer, P.; Bauer, I.; Brosch, G.; Schuele, R.; Hanefeld, W.; Sippl, W.; Jung, M.A novel arginine methyltransferase inhibitor with cellular activity. Bioorg. Med. Chem. Lett. 2007, 17, 4150–4153.Google Scholar
Wang, J.-G.; Xiao, Y.-J.; Li, Y.-H.; Ma, Y.; Li, Z.-M.Identification of some novel AHAS inhibitors via molecular docking and virtual screening approach. Bioorg. Med. Chem. 2007, 15, 374–380.Google Scholar
Hamilton, D.; Wu, J. H.; Batist, G.Structure-based identification of novel human γ-glutamylcysteine synthetase inhibitors. Mol. Pharm. 2007, 71, 1140–1147.Google Scholar
Tsai, K.-C.; Chen, S.-Y.; Liang, P.-H.; Lu, I.-L.; Mahindroo, N.; Hsieh, H.-P.; Chao, Y.-S.; Liu, L.; Liu, D.; Lien, W.; Lin, T.-H.; Wu, S.-Y.Discovery of a novel family of SARS-CoV protease inhibitors by virtual screening and 3D-QSAR studies. J. Med. Chem. 2006, 49, 3485–3495.Google Scholar
Cavasotto, C. N.; Ortiz, M. A.; Abagyan, R. A.; Piedrafita, F. J.In silico identification of novel EGFR inhibitors with antiproliferative activity against cancer cells. Bioorg. Med. Chem. Lett. 2006, 16, 1969–1974.Google Scholar
Dooley, A. J.; Shindo, N.; Taggart, B.; Park, J-.G.; Pang, Y-.P.From genome to drug lead: identification of a small-molecule inhibitor of the SARS virus. Bioorg. Med. Chem. Lett. 2006, 16, 830–833.Google Scholar
Prykhod'ko, A. O.; Yakovenko, O. Y.; Golub, A. G.; Bdzhola, V. G.; Yarmoluk, S. M.Evaluation of 4H-4-chromenone derivatives as inhibitors of protein kinase CCK. Biopolimeri i Klitina 2005, 21, 287–292.Google Scholar
Huang, D.; Lüthi, U.; Kolb, P.; Edler, K.; Cecchini, M.; Audetat, S.; Barberis, A.; Caflisch, A.Discovery of cell-permeable nonpeptide inhibitors of β-secretase by high-throughput docking and continuum electrostatics calculations. J. Med. Chem. 2005, 48, 5108–5111.Google Scholar
Liu, Z.; Huang, C.; Fan, K.; Wei, P.; Chen, H.; Liu, S.; Pei, J.; Shi, L.; Li, B.; Yang, K.; Liu, Y.; Lai, L.Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase. J. Chem. Inf. Model. 2005, 45, 10–17.Google Scholar
Soelaiman, S.; Wei, B. Q.; Bergson, P.; Lee, Y.-S.; Shen, Y.; Mrksich, M.; Shoichet, B. K.; Tang, W.-J.Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough. J. Biol. Chem. 2003, 278, 25990–25997.Google Scholar
McNally, V. A.; Gbaj, A.; Douglas, K. T.; Stratford, I. J.; Jaffar, M.; Freemanan, S.; Bryce, R. A.Identification of a novel class of inhibitor of human and Escherichia coli thymidine phosphorylase by in silico screening. Bioorg. Med. Chem. Lett. 2003, 13, 3705–3709.Google Scholar
Peng, H.; Huang, N.; Qi, J.; Xie, P.; Xu, C.; Wang, J.; Yang, C.Identification of novel inhibitors of BCR-Abl tyrosine kinase via virtual screening. Bioorg. Med. Chem. Lett. 2003, 13, 3693–3699.Google Scholar
Pickett, S. D.; Sherborne, B. S.; Wilkinson, T.; Bennett, J.; Borkakoti, N.; Broadhurst, M.; Hurst, D.; Kilford, I.; McKinnell, M.; Jones, P. S.Discovery of novel low molecular weight inhibitors of IMPDH via virtual needle screening. Bioorg. Med. Chem. Lett. 2003, 13, 1691–1694.Google Scholar
Powers, R. A.; Morandi, F.; Shoichet, B. K.Structure-based discovery of a novel, noncovalent inhibitor of AmpC β-lactamase. Structure 2002, 10, 1013–1023.Google Scholar
Kamionka, M.; Rehm, T.; Beisel, H.-G.; Lang, K.; Engh, R. A.; Holak, T. A.In silico and NMR identification of inhibitors of the IGF-I and IGF-Binding Protein-5 interaction. J. Med. Chem. 2002, 45, 5655–5660.Google Scholar
Iino, M.; Furugori, T.; Mori, T.; Moriyama, S.; Fukuzawa, A.; Shibano, T.Rational design and evaluation of new lead compound structures for selective βARK1 inhibitors. J. Med. Chem. 2002, 45, 2150–2159.Google Scholar
Perola, E.; Xu, K.; Kollmeyer, T. M.; Kaufmann, S. H.; Prendergast, F. G.; Pang, Y.-P.Successful virtual screening of a chemical database for farnesyltransferase inhibitor leads. J. Med. Chem. 2000, 43, 401–408.Google Scholar
Sarmiento, M.; Wu, L.; Keng, Y.-F.; Song, L.; Luo, Z.; Huang, Z.; Wu, G.-Z.; Yuan, A. K.; Zhang, Z.-Y.Structure-based discovery of small molecule inhibitors targeted to protein tyrosine phosphatase 1B. J. Med. Chem. 2000, 43, 146–155.Google Scholar
Nordqvist, A.; Nilsson, M. T.; Roettger, S.; Odell, L. R.; Krajewski, W. W.; Andersson, C. E.; Larhed, M.; Mowbray, S. L.; Karlen, A.Evaluation of the amino acid binding site of Mycobacterium tuberculosis glutamine synthetase for drug discovery. Bioorg. Med. Chem. 2008, 16, 5501–5513.Google Scholar
Feder, M.; Purta, E.; Koscinski, L.; Cubrilo, S.; Vlahovicek, G. M.; Bujnicki, J. M.Virtual screening and experimental verification to identify potential inhibitors of the ErmC methyltransferase responsible for bacterial resistance against macrolide antibiotics. ChemMedChem 2008, 3, 316–322.Google Scholar
Zeng, Z.; Qian, L.; Cao, L.; Tan, H.; Huang, Y.; Xue, X.; Shen, Y.; Zhou, S.Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. App. Microbiol. Biotechnol. 2008, 79, 119–126.Google Scholar
Kuo, C.-J.; Guo, R.-T.; Lu, I.-L.; Liu, H. G.; Wu, S.-Y.; Ko, T.-P.; Wang, A. H.-J.; Liang, P.-H.Structure-based inhibitors exhibit differential activities against Helicobacter pylori and Escherichia coli undecaprenyl pyrophosphate synthases. J. Biomed. Biotechnol. 2008.Google Scholar
Hirayama, K.; Aoki, S.; Nishikawa, K.; Matsumoto, T.; Wada, K.Identification of novel chemical inhibitors for ubiquitin C-terminal hydrolase-L3 by virtual screening. Bioorg. Med. Chem. 2007, 15, 6810–6818.Google Scholar
Song, H.; Wang, R.; Wang, S.; Lin, J.A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc. Natl. Acad. Sci. USA 2005, 102, 4700–4705.Google Scholar
Westerfors, M.; Tedebark, U.; Andersson, H. O.; Öhrman, S.; Choudhury, D.; Ersoy, O.; Shinohara, Y.; Axén, A.; Carredano, E.; Baumann, H.Structure-based discovery of a new affinity ligand to pancreatic α-amylase. J. Mol. Recognit. 2003, 16, 396–405.Google Scholar
Chowdhury, S. F.; Lucrezia, R. D.; Guerrero, R. H.; Brun, R.; Goodman, J.; Ruiz-Perez, L. M.; Pacanowska, D. G.; Gilbert, I. H.Novel inhibitors of leishmanial dihydrofolate reductase. Bioorg. Med. Chem. Lett. 2001, 11, 977–980.Google Scholar
Malvezzi, A.; Rezende, L.; Izidoro, M. A.; Cezari, M. H. S.; Juliano, L.; Amaral, A. T.Uncovering false positives on a virtual screening search for cruzain inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 350–354.Google Scholar
Barreiro, G.; Guimaraes, C. R. W.; Tubert-Brohman, I.; Lyons, T. M.; Tirado-Rives, J.; Jorgensen, W. L.Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. J. Chem. Inf. Model. 2007, 47, 2416–2428.Google Scholar
Brenk, R.; Irwin, J. J.; Shoichet, B. K.Here be dragons: docking and screening in an uncharted region of chemical space. J. Biomol. Screen. 2005, 10, 667–674.Google Scholar
Kanji., G. K.100 Statistical Tests, 3rd edition. Thousand Oaks, CA: Sage, 2006.
http://stattrek.com/Tables/ChiSquare.aspx.
Snedecor, G. W.; Cochran., W. G.Statistical Methods, 8th edition. Ames, IA: Iowa State University Press; 1989, 135–148.
Irwin, J. J.Shoichet, B. K.ZINC – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182.Google Scholar
Negron-Encarnacion, I.; Arce, R.; Jimenez, M.Characterization of acridine species adsorbed on (NH4)2SO4, SiO2, Al2O3, and MgO by steady-state and time-resolved fluorescence and diffuse reflectance techniques. J. Phys. Chem. A 2005, 109, 787–797.Google Scholar
Turek-Etienne, T. C.; Small, E. C.; Soh, S. C.; Xin, T. A.; Gaitonde, P. V.; Barrabee, E. B.; Hart, R. F.; Bryant, R. W.Evaluation of fluorescent compound interference in 4 fluorescence polarization assays: 2 kinases, 1 protease, and 1 phosphatase. J. Biomol. Screening 2003, 8, 176–184.Google Scholar
Feng, B. Y.; Simeonov, A.; Jadhav, A.; Babaoglu, K.; Inglese, J.; Shoichet, B. K.; Austin, C. P.A high-throughput screen for aggregation-based inhibition in a large compound library. J. Med. Chem. 2007, 50, 2385–2390.Google Scholar
Mojumdar, S. C.; Martiska, L.; Valigura, D.; Melnik, M.Thermal and spectral properties of halogenosalicylato-Cu(II) complexes. J. Therm. Analysis and Calor. 2003, 74, 905–914.Google Scholar
Schwarz, K. B.; Arey, B. J.; Tolman, K.; Mahanty, S.Iron chelation as a possible mechanism for aspirin-induced malondialdehyde production by mouse liver microsomes and mitochondria. J. Clin. Invest. 1988, 81, 165–170.Google Scholar
Ha, S.; Andreani, R.; Robbins, A.; Muegge, I.Evaluation of docking/scoring approaches: a comparative study based on MMP3 inhibitors. J. Comput. Aided Mol. Design 2000, 14, 435–448.Google Scholar
http://sampl.eyesopen.com/.
Goto, J.; Kataoka, R.; Hirayama, N.Ph4Dock: pharmacophore-based protein-ligand docking. J. Med. Chem. 2004, 47, 6804–6811.Google Scholar
Blow, D. M.A rearrangement of Cruickshanks formulae for the diffraction-component precision index. Acta Crystallogr., Sect. D 2002, D58, 792–797.Google Scholar
Cruickshank, D. W. J.Remarks about protein structure precision. Acta Crystallogr., Sect. D 1999, D55, 583–601.Google Scholar
http://www.eyesopen.com/products/applications/omega.html.
http://www.eyesopen.com/products/applications/rocs.html.
Bohacek, R. S.; McMartin, C.Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design. J. Med. Chem. 1992, 35, 1671–1684.Google Scholar
Wang, Z.; Canagarajah, B. J.; Boehm, J. C.; Kassisà, S.; Cobb, M. H.; Young, P. R.; Abdel-Meguid, S.; Adams, J. L.; Goldsmith, E. J.Structural basis of inhibitor selectivity in MAP kinases. Structure 1998, 6, 1117–1128.Google Scholar
Hare, B. J.; Walters, W. P.; Caron, P. R.; Bemis, G. W.CORES: An automated method for generating three-dimensional models of protein/ligand complexes. J. Med. Chem. 2004, 47, 4731–4740.Google Scholar
http://www.bioinform.com/issues/12_41/features/150096-1.html.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×