Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-20T18:24:00.010Z Has data issue: false hasContentIssue false

Chapter 1 - Phonons in nanostructures

Published online by Cambridge University Press:  09 October 2009

Get access

Summary

There are no such things as applied sciences, only applications of sciences.

Louis Pasteur, 1872

Phonon effects: fundamental limits on carrier mobilities and dynamical processes

The importance of phonons and their interactions in bulk materials is well known to those working in the fields of solid-state physics, solid-state electronics, optoelectronics, heat transport, quantum electronics, and superconductivity.

As an example, carrier mobilities and dynamical processes in polar semiconductors, such as gallium arsenide, are in many cases determined by the interaction of longitudinal optical (LO) phonons with charge carriers. Consider carrier transport in gallium arsenide. For gallium arsenide crystals with low densities of impurities and defects, steady state electron velocities in the presence of an external electric field are determined predominantly by the rate at which the electrons emit LO phonons. More specifically, an electron in such a polar semiconductor will accelerate in response to the external electric field until the electron's energy is large enough for the electron to emit an LO phonon. When the electron's energy reaches the threshold for LO phonon emission – 36 meV in the case of gallium arsenide – there is a significant probability that it will emit an LO phonon as a result of its interaction with LO phonons. Of course, the electron will continue to gain energy from the electric field.

In the steady state, the processes of electron energy loss by LO phonon emission and electron energy gain from the electric field will come into balance and the electron will propagate through the semiconductor with a velocity known as the saturation velocity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×