Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T17:06:34.929Z Has data issue: false hasContentIssue false

Section 6 - Embryo Assessment

Published online by Cambridge University Press:  11 May 2017

Markus H. M. Montag
Affiliation:
ilabcomm GmbH, St Augustin, Germany
Dean E. Morbeck
Affiliation:
Fertility Associates, New Zealand
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Principles of IVF Laboratory Practice
Optimizing Performance and Outcomes
, pp. 201 - 226
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Hill, G. A., Freeman, M., Bastias, M. C., Rogers, B. J., Herbert, C. M., 3rd et al. The influence of oocyte maturity and embryo quality on pregnancy rate in a program for in vitro fertilization-embryo transfer. Fertil Steril 1989; 52:801–6.Google Scholar
Hardarson, T., Hanson, C., Sjogren, A. and Lundin, K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod 2001; 16:313–8.Google Scholar
Jackson, K. V., Ginsburg, E. S., Hornstein, M. D., Rein, M. S. and Clarke, R. N. Multinucleation in normally fertilized embryos is associated with an accelerated ovulation induction response and lower implantation and pregnancy rates in in vitro fertilization-embryo transfer cycles. Fertil Steril 1998; 70:60–6.Google Scholar
Munne, S. Chromosome abnormalities and their relationship to morphology and development of human embryos. Reprod Biomed Online 2006; 12:234–53.Google Scholar
Prados, F. J., Debrock, S., Lemmen, J. G. and Agerholm, I. The cleavage stage embryo. Hum Reprod 2012; 27(Suppl. 1):i50–71.Google Scholar
Perez, G. I., Tao, X. J. and Tilly, J. L. Fragmentation and death (aka apoptosis) of ovulated oocytes. Mol Hum Reprod 1999; 5:414–20.Google Scholar
Alikani, M., Cohen, J., Tomkin, G., Garrisi, G. J., Mack, C. et al. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril 1999; 71:836–42.Google Scholar
Chi, H. J., Koo, J. J., Choi, S. Y., Jeong, H. J. and Roh, S. I. Fragmentation of embryos is associated with both necrosis and apoptosis. Fertil Steril 2011; 96:187–92.Google Scholar
Steer, C. V., Mills, C. L., Tan, . S.L, Campbell, S. and Edwards, R. G. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Reprod 1992; 7:117–9.Google Scholar
Racowsky, C., Vernon, M., Mayer, J., Ball, G. D., Behr, B. et al. Standardization of grading embryo morphology. Fertil Steril 2010; 94:1152–3.Google Scholar
Alpha Scientists in Reproductive M, Embryology ESIGo. The Istanbul Consensus Workshop on Embryo Assessment: proceedings of an expert meeting. Hum Reprod 2011; 26:1270–83.Google Scholar

References

Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P. and Liebaers, I. The four blastomeres of a 4-cell stage embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum Reprod 2008; 23:1742–7.Google Scholar
Sozen, B., Can, A. and Demir, N. Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions. Dev Biol 2014;395:7383.Google Scholar
Nikas, G., Ao, A., Winston, R. M. L. and Handyside, A. H. Compaction and surface polarity in the human embryo. Biol Reprod 1996; 55:32–7.Google Scholar
Fierro-Gonzalez, J. C., White, M. D., Silva, J. C. and Plachta, N. Cadherin-dependent filopodia control preimplantation embryo compaction. Nature Cell Biol 2013; 15:1424–33.Google Scholar
Kovacs, P. Embryo selection: the role of time-lapse monitoring. Reprod Biol Endocrinol 2014; 12:124.Google Scholar
Iwata, K., Yumoto, K., Sugishima, M., Mizoguchi, C., Kai, Y. et al. Analysis of compaction initiation in human embryos by using time-lapse cinematography. J Assist Reprod Genet 2014; 31:421–6.Google Scholar
Kort, J. D., Lathi, R. B., Brookfield., K., Baker, V. L., Zhao, Q. et al. Aneuploidy rates and blastocyst formation after biopsy of morulae and early blastocysts on day 5. J Assist Reprod Genet 2015; 32:925–30.Google Scholar
Tao, J., Tamis, R., Fink, K., Williams, B., Nelson-White, T. and Craig, R. The neglected morula/compact stage embryo transfer. Hum Reprod 2002; 17:1513–18.Google Scholar
Kang, S. M., Lee, S. W., Jeong, H. J., Yoon, S. H., Koh, M. W. et al. Clinical outcomes of elective single morula embryo transfer versus elective single blastocyst transfer in IVF-ET. J Assist Reprod Genet 2012; 29:423–8.Google Scholar
Lee, S. H., Lee, H. S., Lim, C. K., Park, Y. S., Yang, K. W. et al. Comparison of the clinical outcomes of day 4 and 5 embryo transfer cycles. Clin Exp Reprod Med 2013; 40:122–5.Google Scholar
Prado, F. J., Debrock, S., Lemmen, J. G. and Agerholm, I. The cleavage stage embryo. Hum Reprod 2012; 27(Suppl. 1):150–71.Google Scholar
Tao, J., Tamis, R. and Fink, K. Pregnancies achieved after transferring frozen morula/compact stage embryos. Fertil Steril 2001; 75:629–31.Google Scholar
Tao, J., Craig, R. H., Johnson, M., Williams, B., Lewis, W. et al. Cryopreservation of human embryos at the morula stage and outcomes after transfer. Fertil Steril 2004; 82:108–18.Google Scholar
Vanderzwalmen, P., Bertin, G., Debauche, Ch., Standaert, V., van Roosendaal, E. et al. Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod 2002; 17:744–51.Google Scholar

References

Dokras, A., Sargent, I. L. and Barlow, D. H. Human blastocyst grading: an indicator of developmental potential? Hum Reprod 1993; 8:2119–27.Google Scholar
Balaban, B., Urman, B., Sertac, A., Alatas, C., Aksoy, S. et al. Blastocyst quality affects the success of blastocyst-stage embryo transfer. Fertil Steril 2000; 74:282–7.Google Scholar
Gardner, D. K., Lane, M., Stevens, J., Schlenker, T. and Schoolcraft, W. B. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril 2000; 73:1155–8.Google Scholar
Racowsky, C., Combelles, C. M., Nureddin, A., Pan, Y., Finn, A. et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online 2003; 6:323–31.Google Scholar
Gardner, D. K. and Balaban, B. Choosing between day 3 and day 5 embryo transfers. Clin Obstet Gynecol 2006; 49:8592.Google Scholar
Blake, D. A., Farquhar, C. M., Johnson, N. and Proctor, M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev 2007; CD002118.Google Scholar
Glujovsky, D., Blake, D., Farquhar, C. and Bardach, A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev 2012; 7:CD002118.Google Scholar
Gardner, D. and Schoolcraft, W. In vitro culture of the human blastocyst. In Towards Reproductive Certainty: Infertility and Genetics Beyond, ed. Jansen, R. and Mortimer, D. (pp. 378–88) (Carnforth, UK: Parthenon Publishing, 1999).Google Scholar
Veeck, L. L. and Zaninović, N. An Atlas of Human Blastocysts (New York: Parthenon Publishing, 2003).Google Scholar
Richter, K. S., Harris, D. C., Daneshmand, S. T. and Shapiro, B. S. Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertil Steril 2001; 76:1157–67.Google Scholar
Kovacic, B., Vlaisavljevic, V., Reljic, M. and Cizek-Sajko, M. Developmental capacity of different morphological types of day 5 human morulae and blastocysts. Reprod Biomed Online 2004; 8:687–94.Google Scholar
Alpha Scientists in Reproductive Medicine, ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod 2011; 26:1270–83.Google Scholar
Racowsky, C., Vernon., M., Mayer, J., Ball, G. D., Behr, B. et al. Standardization of grading embryo morphology. Fertil Steril 2010; 94:1152–3.Google Scholar
Hardy, K., Handyside, A. H. and Winston, R. M. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 1989; 107:597604.Google Scholar
Magli, M. C., Jones, G. M., Lundin, K. and van den Abbeel, E. Atlas of human embryology: from oocytes to preimplantation embryos. Hum Reprod 2012; 27(Suppl. 1):i1.Google Scholar

References

Herrero, J. and Meseguer, M. Selection of high potential embryos using time-lapse imaging: the era of morphokinetics. Fertil Steril 2013; 99:1030–4.Google Scholar
Ciray, H. N., Campbell, A., Agerholm, I. E., Aguilar, J., Chamayou, S. et al. Proposed guidelines on the nomenclature and annotation of dynamic human embryo monitoring by a time-lapse user group. Hum Reprod 2014; 29:2650–60.Google Scholar
Ergin, E., Caliskan, E., Yalcinkaya, E., Öztel, Z., Cökelez, K. et al. Frequency of embryo multinucleation detected by time-lapse system and its impact on pregnancy outcome. Fertil Steril 2014; 102:1029–33.Google Scholar
Goodmann, L. R., Goldberg, J., Falcone, T., Austin, C. and Desai, N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized, controlled trial. Fertil Steril (in press).Google Scholar
Montag, M., Liebenthron, J. and Köster, M. Which morphological scoring system is relevant in human embryo development? Plazenta 2011; 32(Suppl. 3):S252–6.Google Scholar
Liu, Y., Chapple, V., Roberts, P. and Matson, P. The prevalence, consequence, and significance of reverse cleavage by human embryos viewed with the use of the EmbryoScope time-lapse video system. Fertil Steril 2014; 2:12951302.Google Scholar
Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K. M., Ramsing, N. B. et al. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod 2011; 26:2658–71.Google Scholar
Rubio, I., Galán, A., Larreategui, Z., Ayerdi, F., Bellver, J. et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril 2014; 102:1287–94.Google Scholar
Cetinkaya, M., Pirkevi, C., Yelke, H., Colakoglu, Y. K., Atayurt, Z. et al. Relative kinetic expressions defining cleavage synchronicity are better predictors of blastocyst formation and quality than absolute time points. J Assist Reprod Genet 2015; 32:2735.Google Scholar
Rubio, I. R., Kuhlmann, R., Agerholm, I., Kirk, J., Herrero, J. et al. Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil Steril 2012; 98:1458–63.Google Scholar
Freour, T., Le Fleuter, N., Lammers, J., Splingart, C., Reignier, A. et al. External validation of a time-lapse prediction model. Fertil Steril 2015; 103:917–22.Google Scholar
Kirkegaard, K., Hindkjaer, J. J. and Ingerslev, H. J. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril 2013; 99:738–44.Google Scholar
Wolff, H. S., Fredrickson, J. R., Walker, D.L. and Morbeck, D. E. Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum Reprod 2013; 28:1776–82.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×