Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-27T16:22:18.546Z Has data issue: false hasContentIssue false

Section II - Investigative techniques

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 87 - 282
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Burtis, C, Ashwood, E, Bruns, D. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 4th ed. Philadelphia, PA: WB Saunders, 2005.Google Scholar
Chiappin, S, Antonelli, G, Gatti, R, De Palo, EF. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 2007;383:3040.CrossRefGoogle ScholarPubMed
Pfaffe, T, Cooper-White, J, Beyerlein, P, Kostner, K, Punyadeera, C. Diagnostic potential of saliva: current state and future applications. Clin Chem 2011;57:675687.CrossRefGoogle ScholarPubMed
Adeli, K. Closing the gaps in pediatric reference intervals: The CALIPER initiative. Clin Biochem 2011;44:480482.Google Scholar
Bailey, D, Colantonio, D, Kyriakopoulou, L, et al. Marked biological variance in endocrine and biochemical markers in childhood: Establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem 2013;59:13931405.Google Scholar
Jung, B, Adeli, K. Clinical laboratory reference intervals in pediatrics: The CALIPER initiative. Clin Biochem 2009;42:15891595.CrossRefGoogle Scholar
Beckett, G, MacKenzie, F. Thyroid guidelines: are thyroid-stimulating hormone assays fit for purpose? Ann Clin Biochem 2007;44:203208.Google Scholar
Weetman, AP. Thyroid-stimulating hormone assays: guidelines, guidance and clinical judgement. Ann Clin Biochem 2007;44:201202.Google Scholar
Dasgupta, A, Bernard, DW. Herbal remedies: effects on clinical laboratory tests. Arch Pathol Lab Med 2006;130:521528.Google Scholar
Kang, GY, Parks, JR, Fileta, B, et al. Thyroxine and triiodothyronine content in commercially available thyroid health supplements. Thyroid 2013;23:12331237.Google Scholar
Ellis, MJ, Livesey, JH, Evans, MJ. Hormone stability in human whole blood. Clin Biochem 2003;36:109112.Google Scholar
Bowen, RA, Chan, Y, Cohen, J, et al. Effect of blood collection tubes on total triiodothyronine and other laboratory assays. Clin Chem 2005;51:424433.Google Scholar
Booth, G, Zahedi, A, Ezzat, S. Evaluation of normal pituitary function. In Melmed, S ed. The Pituitary, 2nd edn, Appendix. Boston, MA: Blackwell, 2002.Google Scholar
Bossuyt, PM, Reitsma, JB, Bruns, DE, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: The STARD initiative. standards for reporting of diagnostic accuracy. Clin Chem 2003;49:16.CrossRefGoogle ScholarPubMed
Dimeski, G. Interference testing. Clin Biochem Rev 2008;29(suppl 1):S43S48.Google Scholar
Kroll, MH, Elin, RJ. Interference with clinical laboratory analyses. Clin Chem 1994;40:19962005.Google Scholar
Klee, GG. Interferences in hormone immunoassays. Clin Lab Med 2004;24:118.CrossRefGoogle ScholarPubMed
Sturgeon, CM, Viljoen, A. Analytical error and interference in immunoassay: minimizing risk. Ann Clin Biochem 2011;48:418432.Google Scholar
Tate, J, Ward, G. Interferences in immunoassay. Clin Biochem Rev 2004;25:105120.Google Scholar
Ismail, AA. Interference from endogenous antibodies in automated immunoassays: what laboratorians need to know. J Clin Pathol 2009;62:673678.CrossRefGoogle ScholarPubMed
Jones, AM, Honour, JW. Unusual results from immunoassays and the role of the clinical endocrinologist. Clin Endocrinol (Oxf) 2006;64:234244.CrossRefGoogle ScholarPubMed
Butch, AW. Dilution protocols for detection of hook effects/prozone phenomenon. Clin Chem 2000;46:17191721.Google Scholar
Spencer, C, Fatemi, S. Thyroglobulin antibody (TgAb) methods: strengths, pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab 2013;27:701712.Google Scholar
Faix, JD. Principles and pitfalls of free hormone measurements. Best Pract Res Clin Endocrinol Metab 2013;27:631645.Google Scholar
Diver, MJ for the Clinical Scince Reviews Committee of the Association for Clinical Biochemistry. Analytical and physiological factors affecting the interpretation of serum testosterone concentration in men. Ann Clin Biochem 2006;43:312.Google Scholar
Melmed, S, Casanueva, FF, Hoffman, AR, et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011;96:273288.CrossRefGoogle ScholarPubMed
Klibanski, A. Clinical practice. prolactinomas. N Engl J Med 2010;362:12191226.Google Scholar
Fahie-Wilson, M, Smith, TP. Determination of prolactin: the macroprolactin problem. Best Pract Res Clin Endocrinol Metab 2013;27:725742.Google Scholar
Cook, DM, Ezzat, S, Katznelson, L, et al. AACE medical guidelines for clinical practice for the diagnosis and treatment of acromegaly. Endocr Pract 2004;10:213225.Google Scholar
Bidlingmaier, M, Strasburger, CJ. Growth hormone assays: current methodologies and their limitations. Pituitary 2007;10:115119.Google Scholar
Brabant, G, Wallaschofski, H. Normal levels of serum IGF-I: determinants and validity of current reference ranges. Pituitary 2007;10:129133.Google Scholar
Freda, PU. Monitoring of acromegaly: what should be performed when GH and IGF-1 levels are discrepant? Clin Endocrinol (Oxf) 2009;71:166170.CrossRefGoogle ScholarPubMed
Kwan, AY, Hartman, ML. IGF-I measurements in the diagnosis of adult growth hormone deficiency. Pituitary 2007;10:151157.CrossRefGoogle ScholarPubMed
Molitch, ME, Clemmons, DR, Malozowski, S, Merriam, GR, Vance, ML for the Endocrine Society. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011;96:15871609.Google Scholar
Hartman, ML, Crowe, BJ, Biller, BM, et al. Which patients do not require a GH stimulation test for the diagnosis of adult GH deficiency? J Clin Endocrinol Metab 2002;87:477485.Google Scholar
Corneli, G, Gasco, V, Prodam, F, Grottoli, S, Aimaretti, G, Ghigo, E. Growth hormone levels in the diagnosis of growth hormone deficiency in adulthood. Pituitary 2007;10:141149.Google Scholar
Popovic, V. Approach to testing growth hormone (GH) secretion in obese subjects. J Clin Endocrinol Metab 2013;98:17891796.Google Scholar
Bonert, V. Diagnostic challenges in acromegaly: a case-based review. Best Pract Res Clin Endocrinol Metab 2009;23(suppl 1):S23S30.Google Scholar
Clemmons, DR. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin Chem 2011;57:555559.CrossRefGoogle ScholarPubMed
Clemmons, DR. IGF-I assays: current assay methodologies and their limitations. Pituitary 2007;10:121128.Google Scholar
Cole, LA, DuToit, S, Higgins, TN. Total hCG tests. Clin Chim Acta 2011;412:22162222.Google Scholar
Botelho, JC, Shacklady, C, Cooper, HC, et al. Isotope-dilution liquid chromatography–tandem mass spectrometry candidate reference method for total testosterone in human serum. Clin Chem 2013;59:372380.Google Scholar
de Ronde, W, van der Schouw, YT, Pols, HA, et al. Calculation of bioavailable and free testosterone in men: a comparison of 5 published algorithms. Clin Chem 2006;52:17771784.Google Scholar
Morales, A, Collier, CP, Clark, AF. A critical appraisal of accuracy and cost of laboratory methodologies for the diagnosis of hypogonadism: the role of free testosterone assays. Can J Urol 2012;19:63146318.Google Scholar
Sartorius, G, Ly, LP, Sikaris, K, McLachlan, R, Handelsman, DJ. Predictive accuracy and sources of variability in calculated free testosterone estimates. Ann Clin Biochem 2009;46:137143.Google Scholar
Belchetz, PE, Barth, JH, Kaufman, JM. Biochemical endocrinology of the hypogonadal male. Ann Clin Biochem 2010;47:503515.Google Scholar
Rosner, W, Vesper, H, for the Endocrine Society, et al. Toward excellence in testosterone testing: a consensus statement. J Clin Endocrinol Metab 2010;95:45424548.Google Scholar
Rosner, W, Hankinson, SE, Sluss, PM, Vesper, HW, Wierman, ME. Challenges to the measurement of estradiol: an Endocrine Society position statement. J Clin Endocrinol Metab 2013;98:13761387.CrossRefGoogle Scholar
Fenske, W, Allolio, B. Clinical review: current state and future perspectives in the diagnosis of diabetes insipidus. A clinical review. J Clin Endocrinol Metab 2012;97:34263437.Google Scholar
Bahn, RS, Burch, HB, Cooper, DS, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Endocr Pract 2011;17:456520.Google Scholar
Garber, JR, Cobin, RH, Gharib, H, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid 2012;22:12001235.Google Scholar
Persani, L. Clinical review: central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges. J Clin Endocrinol Metab 2012;97:30683078.Google Scholar
Despres, N, Grant, AM. Antibody interference in thyroid assays: a potential for clinical misinformation. Clin Chem 1998;44:440454.CrossRefGoogle ScholarPubMed
Stagnaro-Green, A, Abalovich, M, Alexander, E, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 2011;21:10811125.Google Scholar
Sinclair, D. Clinical and laboratory aspects of thyroid autoantibodies. Ann Clin Biochem 2006;43:173183.Google Scholar
Barbesino, G, Tomer, Y. Clinical review: clinical utility of TSH receptor antibodies. J Clin Endocrinol Metab 2013;98:22472255.Google Scholar
Olateju, TO, Vanderpump, MP. Thyroid hormone resistance. Ann Clin Biochem 2006;43:431440.CrossRefGoogle ScholarPubMed
American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.CrossRefGoogle ScholarPubMed
Hoofnagle, AN, Roth, MY. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry. J Clin Endocrinol Metab 2013;98:13431352.Google Scholar
Elisei, R, Romei, C. Calcitonin estimation in patients with nodular goiter and its significance for early detection of MTC: European comments to the guidelines of the American Thyroid Association. Thyroid Res 2013;6(suppl 1):S2–6614–6-S1-S2. Epub 2013 Mar 14.Google Scholar
Daumerie, C, Maiter, D, Gruson, D. Serum calcitonin estimation in medullary thyroid cancer: Basal or stimulated levels? Thyroid Res 2013;6(suppl 1):S2.CrossRefGoogle ScholarPubMed
Colombo, C, Verga, U, Mian, C, et al. Comparison of calcium and pentagastrin tests for the diagnosis and follow-up of medullary thyroid cancer. J Clin Endocrinol Metab 2012;97:905913.Google Scholar
Daniels, GH. Screening for medullary thyroid carcinoma with serum calcitonin measurements in patients with thyroid nodules in the United States and Canada. Thyroid 2011;21:11991207.Google Scholar
Giovanella, L, Verburg, FA, Imperiali, M, Valabrega, S, Trimboli, P, Ceriani, L. Comparison of serum calcitonin and procalcitonin in detecting medullary thyroid carcinoma among patients with thyroid nodules. Clin Chem Lab Med 2013;51:14771481.Google Scholar
Funder, JW, Carey, RM, Fardella, C, et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2008;93:32663281.Google Scholar
Stowasser, M, Taylor, PJ, Pimenta, E, Ahmed, AH, Gordon, RD. Laboratory investigation of primary aldosteronism. Clin Biochem Rev 2010;31:3956.Google Scholar
Oelkers, W. Adrenal insufficiency. N Engl J Med 1996;335:12061212.Google Scholar
Nieman, LK, Biller, BM, Findling, JW, et al. The diagnosis of Cushing's syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2008;93:15261540.Google Scholar
Inder, WJ, Dimeski, G, Russell, A. Measurement of salivary cortisol in 2012: laboratory techniques and clinical indications. Clin Endocrinol (Oxf) 2012;77:645651.Google Scholar
Raff, H. Utility of salivary cortisol measurements in Cushing's syndrome and adrenal insufficiency. J Clin Endocrinol Metab 2009;94:36473655.CrossRefGoogle ScholarPubMed
Newell-Price, J, Bertagna, X, Grossman, AB, Nieman, LK. Cushing's syndrome. Lancet 2006;367:16051617.Google Scholar
Merke, DP, Bornstein, SR. Congenital adrenal hyperplasia. Lancet 2005;365:21252136.Google Scholar
Marsden, D, Larson, CA. Emerging role for tandem mass spectrometry in detecting congenital adrenal hyperplasia. Clin Chem 2004;50:467468.CrossRefGoogle ScholarPubMed
Kushnir, MM, Rockwood, AL, Roberts, WL, et al. Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin Chem 2006;52:15591567.Google Scholar
Grouzmann, E, Lamine, F. Determination of catecholamines in plasma and urine. Best Pract Res Clin Endocrinol Metab 2013;27:713723.Google Scholar
Ward, BK, Magno, AL, Walsh, JP, Ratajczak, T. The role of the calcium-sensing receptor in human disease. Clin Biochem 2012;45:943953.CrossRefGoogle ScholarPubMed
D'Amour, P. Circulating PTH molecular forms: what we know and what we don't. Kidney Int Suppl 2006;102:S29S33.CrossRefGoogle Scholar
Souberbielle, JC, Friedlander, G, Cormier, C. Practical considerations in PTH testing. Clin Chim Acta 2006;366:8189.CrossRefGoogle ScholarPubMed
Farrell, CJ, Herrmann, M. Determination of vitamin D and its metabolites. Best Pract Res Clin Endocrinol Metab 2013;27:675688.Google Scholar
Fraser, WD. Hyperparathyroidism. Lancet 2009;374:145158.CrossRefGoogle ScholarPubMed
Imel, EA, Econs, MJ. Approach to the hypophosphatemic patient. J Clin Endocrinol Metab 2012;97:696706.Google Scholar
Endres, DB. Investigation of hypercalcemia. Clin Biochem 2012;45:954963.Google Scholar
Thakker, RV, Newey, PJ, Walls, GV, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 2012;97:29903011.Google Scholar
Carneiro-Pla, D. Contemporary and practical uses of intraoperative parathyroid hormone monitoring. Endocr Pract 2011;17(suppl 1):4453.Google Scholar
Fritchie, K, Zedek, D, Grenache, DG. The clinical utility of parathyroid hormone-related peptide in the assessment of hypercalcemia. Clin Chim Acta 2009;402:146149.Google Scholar
Glendenning, P, Laffer, LL, Weber, HK, Musk, AA, Vasikaran, SD. Parathyroid hormone is more stable in EDTA plasma than in serum. Clin Chem 2002;48:766767.Google Scholar
de Herder, WW. Biochemistry of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 2007;21:3341.Google Scholar
Vinik, AI, Silva, MP, Woltering, EA, Go, VL, Warner, R, Caplin, M. Biochemical testing for neuroendocrine tumors. Pancreas 2009;38:876889.Google Scholar
Vinik, AI, Woltering, EA, Warner, RR, et al. NANETS consensus guidelines for the diagnosis of neuroendocrine tumor. Pancreas 2010;39:713734.Google Scholar
O'Toole, D, Grossman, A, Gross, D, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: Biochemical markers. Neuroendocrinology 2009;90:194202.CrossRefGoogle ScholarPubMed
Korse, CM, Muller, M, Taal, BG. Discontinuation of proton pump inhibitors during assessment of chromogranin A levels in patients with neuroendocrine tumours. Br J Cancer 2011;105:11731175.Google Scholar
Mosli, HH, Dennis, A, Kocha, W, Asher, LJ, Van Uum, SH. Effect of short-term proton pump inhibitor treatment and its discontinuation on chromogranin A in healthy subjects. J Clin Endocrinol Metab 2012;97:E17311735.Google Scholar
Heurtault, B, Reix, N, Meyer, N, et al. Extensive study of human insulin immunoassays: promises and pitfalls for insulin analogue detection and quantification. Clin Chem Lab Med 2014;52:355362.CrossRefGoogle ScholarPubMed
Neal, JM, Han, W. Insulin immunoassays in the detection of insulin analogues in factitious hypoglycemia. Endocr Pract 2008;14:10061010.Google Scholar

References

Bushong, SC. Radiologic Science for Technologists: Physics, Biology, Protection. St. Louis, MO: Mosby, 2008:162176.Google Scholar
Bushong, SC. Radiologic Science for Technologists: Physics, Biology, Protection. St. Louis, MO: Mosby, 2008:597612.Google Scholar
Merritt, CRB. Physics of ultrasound. In Rumack, CM, Wilson, SR, Charboneau, JW, Levine, D, eds, Diagnostic Ultrasound, 4th edn. Philadelphia, PA: Elsevier-Mosby, 2011: 233.Google Scholar
Westbrook, C, Roth, CK, Talbot, J. Basic Principles. In Westbrook, C, Roth, CK, Talbot, J. MRI in Practice, 4th edn. Oxford: Wiley-Blackwell, 2011:120.Google Scholar
Wilson, SR, Burns, PN. Microbubble-enhanced US in body imaging: what role? Radiology 2010;257:2439.Google Scholar
Stacul, F, van der Molen, AJ, Reimer, P, Webb, JA, Thomsen, HS, Morcos, SK, Almén, T, Aspelin, P, Bellin, MF, Clement, O, Heinz-Peer, G Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 2011;21:25272541.Google Scholar
Grobner, T. Gadolinium: a specific trigger for the development of nephrogenic fibrosing dermopathy and nephorgenic systemic fibrosis? Nephrol Dial Transplant 2006;21:11041108.Google Scholar

References

Monpeyssen, H, Tramalloni, J, Poiree, S, Helenon, O, Correas, JM. Elastography of the thyroid. Diagn Intervent Imaging 2013;94:535544.Google Scholar
Lacout, A, Chevenet, C, Thariat, J, Figl, A, Marcy, PY. Qualitative ultrasound elastography assessment of benign thyroid nodules: Patterns and intra-observer acquisition variability. Indian J Radiol Imaging 2013;23:337341.Google Scholar
Hornung, M, Jung, EM, Georgieva, M, Schlitt, HJ, Stroszczynski, C, Agha, A. Detection of microvascularization of thyroid carcinomas using linear high resolution contrast-enhanced ultrasonography (CEUS). Clin Hemorheol Microcirc 2012;52:197203.Google Scholar

References

Prokop, M. General principles of MDCT. Eur J Radiol 2003;45(suppl 1):S4S10.Google Scholar
Rydberg, J, Buckwalter, KA, Caldemeyer, KS, Phillips, MD, Conces, DJ, Aisen, AM, et al. Multisection CT: scanning techniques and clinical applications. Radiographics 2000;20:17871806.Google Scholar
Brant, WE, Helms, C. Fundamentals of Diagnostic Radiology, 4th edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2012.Google Scholar
Bitar, R, Leung, G, Perng, R, Tadros, S, Moody, AR, Sarrazin, J, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 2006;26:513537.Google Scholar
Golman, K, Olsson, LE, Axelsson, O, Månsson, S, Karlsson, M, Petersson, JS. Molecular imaging using hyperpolarized 13C. Br J Radiol 2003. pp. S118–127.CrossRefGoogle Scholar
Pooley, RA. AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics 2005;25:10871099.Google Scholar

References

Ozaki, O. [Anomalous development of the thyroid.] Ryoikibetsu Shokogun Shirizu 1993;(1):247249.Google Scholar
Zivic, R, Radovanovic, D, Vekic, B, Markovic, I, Dzodic, R, Zivaljevic, V. Surgical anatomy of the pyramidal lobe and its significance in thyroid surgery. S Afr J Surg 2011;49:110, 112, 114 passim.Google Scholar
Solbiati, L. La tiroide e le paratiroidi [The thyroid and parathyroid]. In Rizzatto, GSL, ed. Anatomia Ecografica:quadri normali, varianti e limiti con il patologico. Milan: Masson, 1992: 3545.Google Scholar
Lucas, KJ. Use of thyroid ultrasound volume in calculating radioactive iodine dose in hyperthyroidism. Thyroid 2000;10:151155.Google Scholar
Hong, Y, Liu, X, Li, Z, Zhang, X, Chen, M, Luo, Z. Real-time ultrasound elastography in the differential diagnosis of benign and malignant thyroid nodules. J Ultrasound Med 2009;28:861867.CrossRefGoogle ScholarPubMed
Nemec, U, Nemec, SF, Novotny, C, Weber, M, Czerny, C, Krestan, CR. Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy. Eur Radiol 2012;22:13571365.CrossRefGoogle ScholarPubMed
Stager, J, Froesch, ER. Congenital familial thyroid aplasia. Acta Endocrinol (Copenh) 1981;96:188191.Google Scholar
Harada, T, Nishikawa, Y, Ito, K. Aplasia of one thyroid lobe. Am J Surg 1972;124:617619.CrossRefGoogle ScholarPubMed
Harris, KB, Pass, KA. Increase in congenital hypothyroidism in New York State and in the United States. Mol Genet Metab 2007;91:268277.Google Scholar
Hennemann, G. Non-toxic goitre. Clin Endocrinol Metab 1979;8:167179.Google Scholar
Ahuja, AT, Griffiths, JF, Roebuck, DJ, Loftus, WK, Lau, KY, Yeung, CK, et al. The role of ultrasound and oesophagography in the management of acute suppurative thyroiditis in children associated with congenital pyriform fossa sinus. Clin Radiol 1998;53:209211.Google Scholar
Singer, PA. Thyroiditis: acute, subacute, and chronic. Med Clin North Am 1991;75:6177.Google Scholar
Birchall, IW, Chow, CC, Metreweli, C. Ultrasound appearances of de Quervain's thyroiditis. Clin Radiol 1990;41:5759.CrossRefGoogle ScholarPubMed
Brander, A. Ultrasound appearances in de Quervain's subacute thyroiditis with long-term follow-up. J Intern Med 1992;232:321325.Google Scholar
Samuels, MH. Subacute, silent, and postpartum thyroiditis. Med Clin North Am 2012;96:223233.Google Scholar
Pearce, EN, Farwell, AP, Braverman, LE. Thyroiditis. N Engl J Med 2003;348:26462655.Google Scholar
Yeh, HC, Futterweit, W, Gilbert, P. Micronodulation: ultrasonographic sign of Hashimoto thyroiditis. J Ultrasound Med 1996;15:813819.CrossRefGoogle ScholarPubMed
Serres-Creixams, X, Castells-Fuste, I, Pruna-Comella, X, Yetano-Laguna, V, Garriga-Farriol, V, Gallardo-Agromayor, E. Paratracheal lymph nodes: a new sonographic finding in autoimmune thyroiditis. J Clin Ultrasound 2008;36:418421.Google Scholar
Brancato, D, Citarrella, R, Richiusa, P, Amato, MC, Vetro, C, Galluzzo, CG. Neck lymph nodes in chronic autoimmune thyroiditis: the sonographic pattern. Thyroid 2013;23:173177.Google Scholar
Raviprakash, CS, Joseph, C, Xavier, S, Raj, G. Primary non-Hodgkin's lymphoma of the thyroid with lymphocytic thyroiditis. Indian J Otolaryngol Head Neck Surg 2005;57:257259.CrossRefGoogle ScholarPubMed
Nam, YJ, Kim, BH, Lee, SK, Jeon, YK, Kim, SS, Jung, WJ, et al. Co-occurrence of papillary thyroid carcinoma and mucosa-associated lymphoid tissue lymphoma in a patient with long-standing hashimoto thyroiditis. Endocrinol Metab 2013;28:341345.Google Scholar
Anil, C, Goksel, S, Gursoy, A. Hashimoto's thyroiditis is not associated with increased risk of thyroid cancer in patients with thyroid nodules: a single-center prospective study. Thyroid 2010;20:601606.Google Scholar
Anderson, L, Middleton, WD, Teefey, SA, Reading, CC, Langer, JE, Desser, T, et al. Hashimoto thyroiditis. Part 1, sonographic analysis of the nodular form of Hashimoto thyroiditis. AJR Am J Roentgenol 2010;195:208215.CrossRefGoogle ScholarPubMed
Fatourechi, MM, Hay, ID, McIver, B, Sebo, TJ, Fatourechi, V. Invasive fibrous thyroiditis (Riedel thyroiditis): the Mayo Clinic experience, 1976–2008. Thyroid 2011;21:765772.Google Scholar
Perez Fontan, FJ, Cordido Carballido, F, Pombo Felipe, F, Mosquera Oses, J, Villalba Martin, C. Riedel thyroiditis: US, CT, and MR evaluation. J Comput Assist Tomogr 1993;17:324325.Google Scholar
Baldini, M, Castagnone, D, Rivolta, R, Meroni, L, Pappalettera, M, Cantalamessa, L. Thyroid vascularization by color doppler ultrasonography in Graves' disease. Changes related to different phases and to the long-term outcome of the disease. Thyroid 1997;7:823828.Google Scholar
Aldasouqi, S, Sheikh, A, Klosterman, P. Doppler ultrasonography in the diagnosis of Graves disease: a non-invasive, widely under-utilized diagnostic tool. Ann Saudi Med 2009;29:323324.Google Scholar
Kumar, KV, Vamsikrishna, P, Verma, A, Muthukrishnan, J, Rayudu, BR, Modi, KD. Utility of colour Doppler sonography in patients with Graves' disease. West Ind Med J 2009;58:566570.Google Scholar
Castagnone, D, Rivolta, R, Rescalli, S, Baldini, MI, Tozzi, R, Cantalamessa, L. Color Doppler sonography in Graves' disease: value in assessing activity of disease and predicting outcome. AJR Am J Roentgenol 1996;166:203207.Google Scholar
Erbil, Y, Barbaros, U, Ozbey, N, Kapran, Y, Tukenmez, M, Bozbora, A, et al. Graves' disease, with and without nodules, and the risk of thyroid carcinoma. J Laryngol Otol 2008;122:291295.Google Scholar
Pascual Corrales, E, Principe, RM, Laguna Muro, S, Martinez Regueira, F, Alcalde Navarrete, JM, Guillen Grima, F, et al. [Incidental differentiated thyroid carcinoma is less prevalent in Graves' disease than in multinodular goiter.] Endocrinol Nutr 2012;59:169173.Google Scholar
Rojeski, MT, Gharib, H. Nodular thyroid disease. Evaluation and management. N Engl J Med 1985;313:428436.Google Scholar
Land, CE, Zhumadilov, Z, Gusev, BI, Hartshorne, MH, Wiest, PW, Woodward, PW, et al. Ultrasound-detected thyroid nodule prevalence and radiation dose from fallout. Radiat Res 2008;169:373383.Google Scholar
Guth, S, Theune, U, Aberle, J, Galach, A, Bamberger, CM. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Invest 2009;39:699706.Google Scholar
Hegedus, L. Clinical practice. The thyroid nodule. N Engl J Med 2004;351:17641771.Google Scholar
Kerr, L. High-resolution thyroid ultrasound: the value of color Doppler. Ultrasound Q 1994:21–43.Google Scholar
Moon, WJ, Jung, SL, Lee, JH, Na, DG, Baek, JH, Lee, YH, et al. Benign and malignant thyroid nodules: US differentiation – multicenter retrospective study. Radiology 2008;247:762770.Google Scholar
Frates, MC, Benson, CB, Doubilet, PM, Kunreuther, E, Contreras, M, Cibas, ES, et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab 2006;91:34113417.Google Scholar
Taki, S, Terahata, S, Yamashita, R, Kinuya, K, Nobata, K, Kakuda, K, et al. Thyroid calcifications: sonographic patterns and incidence of cancer. Clin Imaging 2004;28:368371.Google Scholar
Papini, E, Guglielmi, R, Bianchini, A, Crescenzi, A, Taccogna, S, Nardi, F, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002;87:19411946.Google Scholar
Yu, GP, Li, JC, Branovan, D, McCormick, S, Schantz, SP. Thyroid cancer incidence and survival in the National Cancer Institute surveillance, epidemiology, and end results race/ethnicity groups. Thyroid 2010;20:465473.Google Scholar
42.Howlett, DC, Speirs, A. The thyroid incidentaloma: ignore or investigate? J Ultrasound Med 2007;26:13671371.Google Scholar
Cronan, JJ. Thyroid nodules: is it time to turn off the US machines? Radiology 2008;247:602604.Google Scholar
Frates, MC, Benson, CB, Charboneau, JW, Cibas, ES, Clark, OH, Coleman, BG, et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Ultrasound Q 2006;22:231238; discussion 9–40.Google Scholar
DeGroot, LJ, Reilly, M, Pinnameneni, K, Refetoff, S. Retrospective and prospective study of radiation-induced thyroid disease. Am J Med 1983;74:852862.Google Scholar
Kim, MJ, Kim, EK, Kwak, JY, Park, CS, Chung, WY, Nam, KH, et al. Differentiation of thyroid nodules with macrocalcifications: role of suspicious sonographic findings. J Ultrasound Med 2008;27:11791184.Google Scholar
Hong, YJ, Son, EJ, Kim, EK, Kwak, JY, Hong, SW, Chang, HS. Positive predictive values of sonographic features of solid thyroid nodule. Clin Imaging 2010;34:127133.Google Scholar
Cappelli, C, Pirola, I, Cumetti, D, Micheletti, L, Tironi, A, Gandossi, E, et al. Is the anteroposterior and transverse diameter ratio of nonpalpable thyroid nodules a sonographic criteria for recommending fine-needle aspiration cytology? Clin Endocrinol (Oxf) 2005;63:689693.CrossRefGoogle ScholarPubMed
Iannuccilli, JD, Cronan, JJ, Monchik, JM. Risk for malignancy of thyroid nodules as assessed by sonographic criteria: the need for biopsy. J Ultrasound Med 2004;23:14551464.Google Scholar
Hoang, JK, Lee, WK, Lee, M, Johnson, D, Farrell, S. US Features of thyroid malignancy: pearls and pitfalls. Radiographics 2007;27:847860; discussion 61–65.Google Scholar
Jun, P, Chow, LC, Jeffrey, RB. The sonographic features of papillary thyroid carcinomas: pictorial essay. Ultrasound Q 2005;21:3945.Google Scholar
Frates, MC, Benson, CB, Doubilet, PM, Cibas, ES, Marqusee, E. Can color Doppler sonography aid in the prediction of malignancy of thyroid nodules? J Ultrasound Med 2003;22:127–31; quiz 32–34.Google Scholar
Moon, HJ, Kwak, JY, Kim, MJ, Son, EJ, Kim, EK. Can vascularity at power Doppler US help predict thyroid malignancy? Radiology 2010;255:260269.CrossRefGoogle ScholarPubMed
Grebe, SK, Hay, ID. Follicular cell-derived thyroid carcinomas. Cancer Treat Res 1997;89:91140.CrossRefGoogle ScholarPubMed
Chen, R, Wei, T, Li, ZH, Gong, RX, Zhu, JQ. [Predictors of level V lymphatic metastasis in papillary thyroid carcinoma.]. Zhonghua wai ke za zhi 2012;50:625628.Google Scholar
Baloch, Z, LiVolsi, VA, Tondon, R. Aggressive variants of follicular cell derived thyroid carcinoma; the so called ‘real thyroid carcinomas. J Clin Pathol 2013;66:733743.Google Scholar
Matias-Guiu, X, De Lellis, R. Medullary thyroid carcinoma: a 25-year perspective. Endocr Pathol 2014;25:2129.Google Scholar
Desser, TS, Kamaya, A. Ultrasound of thyroid nodules. Neuroimaging Clin N Am 2008;18:463478, vii.Google Scholar
Trimboli, P, Cremonini, N, Ceriani, L, Saggiorato, E, Guidobaldi, L, Romanelli, F, et al. Calcitonin measurement in aspiration needle washout fluids has higher sensitivity than cytology in detecting medullary thyroid cancer: a retrospective multicentre study. Clin Endocrinol (Oxf) 2014;80:135140.Google Scholar
Nel, CJ, van Heerden, JA, Goellner, JR, Gharib, H, McConahey, WM, Taylor, WF, et al. Anaplastic carcinoma of the thyroid: a clinicopathologic study of 82 cases. Mayo Clin Proc 1985;60:5158.Google Scholar
Hamburger, JI, Miller, JM, Kini, SR. Lymphoma of the thyroid. Ann Intern Med 1983;99:685693.Google Scholar
Kwak, JY, Kim, EK, Ko, KH, Yang, WI, Kim, MJ, Son, EJ, et al. Primary thyroid lymphoma: role of ultrasound-guided needle biopsy. J Ultrasound Med 2007;26:17611765.Google Scholar
Solbiati, LJWC, Reading, CC, James, EM, Hay, ID. The thyroid gland. In Rumack, CM, Wilson, SR, Charboneau, JW, Levine, D eds. Diagnostic Ultrasound, 2nd edn. Philadelphia, PA:Elsevier-Mosby, 2011: 708749.Google Scholar
Cibas, ES, Alexander, EK, Benson, CB, de Agustin, PP, Doherty, GM, Faquin, WC, et al. Indications for thyroid FNA and pre-FNA requirements: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol 2008;36:390399.Google Scholar
Gharib, H, Papini, E, Paschke, R, Duick, DS, Valcavi, R, Hegedus, L, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. J Endocrinol Invest 2010;33(suppl):150.Google Scholar
American Thyroid Association Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, Kloos, RT, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.Google Scholar
Naim, C, Karam, R, Edde, D. Ultrasound-guided fine-needle aspiration biopsy of the thyroid: methods to decrease the rate of unsatisfactory biopsies in the absence of an on-site pathologist. Canadian Association of Radiologists J Can Assoc Radiol 2013;64:220225.Google Scholar
Wang, C. The anatomic basis of parathyroid surgery. Ann Surg 1976;183:271275.Google Scholar
Mansberger, AR Jr., Wei, JP. Surgical embryology and anatomy of the thyroid and parathyroid glands. Surg Clin North Am 1993;73:727746.Google Scholar
van Heerden, JA, Beahrs, OH, Woolner, LB. The pathology and surgical management of primary hyperparathyroidism. Surg Clin North Am 1977;57:557563.Google Scholar
Baloch, ZW, LiVolsi, VA. Double adenoma of the parathyroid gland: does the entity exist? Arch Pathol Lab Med 2001;125:178179.CrossRefGoogle ScholarPubMed
Perez-Monte, JE, Brown, ML, Clarke, MR, Watson, CG, Carty, SE. Parathyroid hyperplasia, thymic carcinoid and pituitary adenoma detected with technetium-99m-MIBI in MEN type I. J Nucl Med 1997;38:17671769.Google Scholar
Schaapveld, M, Jorna, FH, Aben, KK, Haak, HR, Plukker, JT, Links, TP. Incidence and prognosis of parathyroid gland carcinoma: a population-based study in The Netherlands estimating the preoperative diagnosis. Am J Surg 2011;202:590597.Google Scholar
Roe, SM, Burns, RP, Graham, LD, Brock, WB, Russell, WL. Cost-effectiveness of preoperative localization studies in primary hyperparathyroid disease. Ann Surg 1994;219:582586.Google Scholar
Casara, D, Rubello, D, Piotto, A, Pelizzo, MR. 99mTc-MIBI radio-guided minimally invasive parathyroid surgery planned on the basis of a preoperative combined 99mTc-pertechnetate/99mTc-MIBI and ultrasound imaging protocol. Eur J Nucl Med 2000;27:13001304.Google Scholar
Reading, CC, Charboneau, JW, James, EM, Karsell, PR, Purnell, DC, Grant, CS, et al. High-resolution parathyroid sonography. AJR Am J Roentgenol 1982;139:539546.Google Scholar
Gooding, GA, Duh, QY. Primary hyperparathyroidism: functioning hemorrhagic parathyroid cyst. J Clin Ultrasound 1997;25:8284.Google Scholar
Funari, M, Campos, Z, Gooding, GA, Higgins, CB. MRI and ultrasound detection of asymptomatic thyroid nodules in hyperparathyroidism. J Comput Assist Tomogr 1992;16:615619.Google Scholar
Doppman, JL, Brennan, MF, Kahn, CR, Marx, SJ. Circumscribing or periadenomal vessel: a helpful angiographic finding in certain islet cell and parathyroid adenomas. AJR Am J Roentgenol 1981;136:163165.Google Scholar
Erbil, Y, Salmaslioglu, A, Kabul, E, Issever, H, Tunaci, M, Adalet, I, et al. Use of preoperative parathyroid fine-needle aspiration and parathormone assay in the primary hyperparathyroidism with concomitant thyroid nodules. Am J Surg 2007;193:665671.Google Scholar
Kendrick, ML, Charboneau, JW, Curlee, KJ, van Heerden, JA, Farley, DR. Risk of parathyromatosis after fine-needle aspiration. American Surgeon 2001;67:290–3; discussion 3–4.Google Scholar
Daly, BD, Coffey, SL, Behan, M. Ultrasonographic appearances of parathyroid carcinoma. Br J Radiol 1989;62:10171019.Google Scholar

References

Parker, JJ, Waziri, A. Preoperative evaluation of pineal tumors. Neurosurg Clin North Am 2011;22:353358.Google Scholar
Inoue, Y, Saiwai, S, Miyamoto, T, Katsuyama, J. Enhanced high-resolution sagittal MRI of normal pineal glands. J Comput Assist Tomogr 1994;18:182186.Google Scholar
Choy, W, Kim, W, Spasic, M, Voth, B, Yew, A, Yang, I. Pineal cyst: a review of clinical and radiological features. Neurosurg Clin North Am 2011;22:341351.Google Scholar
Sawamura, Y, Ikeda, J, Ozawa, M, Minoshima, Y, Saito, H, Abe, H. Magnetic resonance images reveal a high incidence of asymptomatic pineal cysts in young women. Neurosurgery 1995;37:1115; discussion 15–16.Google Scholar
Barboriak, DP, Lee, L, Provenzale, JM. Serial MR imaging of pineal cysts: implications for natural history and follow-up. AJR Am J Roentgenol 2001;176:737743.Google Scholar
Mandera, M, Marcol, W, Bierzynska-Macyszyn, G, Kluczewska, E. Pineal cysts in childhood. Childs Nerv Syst 2003;19:750755.Google Scholar
Osborn, AG, Preece, MT. Intracranial cysts: radiologic–pathologic correlation and imaging approach. Radiology 2006;239:650664.Google Scholar
Gaillard, F, Jones, J. Masses of the pineal region: clinical presentation and radiographic features. Postgrad Med J 2010;86:597607.CrossRefGoogle ScholarPubMed
Fain, JS, Tomlinson, FH, Scheithauer, BW, Parisi, JE, Fletcher, GP, Kelly, PJ, et al. Symptomatic glial cysts of the pineal gland. J Neurosurg 1994;80:454460.Google Scholar
Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK, Burger, PC, Jouvet, A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97109.Google Scholar
Engel, U, Gottschalk, S, Niehaus, L, Lehmann, R, May, C, Vogel, S, et al. Cystic lesions of the pineal region: MRI and pathology. Neuroradiology 2000;42:399402.Google Scholar
Fakhran, S, Escott, EJ. Pineocytoma mimicking a pineal cyst on imaging: true diagnostic dilemma or a case of incomplete imaging? AJNR Am J Neuroradiol 2008;29:159163.Google Scholar
Smith, AB, Rushing, EJ, Smirniotopoulos, JG. From the archives of the AFIP: lesions of the pineal region: radiologic–pathologic correlation. Radiographics 2010;30:20012020.Google Scholar
Dahiya, S, Perry, A. Pineal tumors. Adv Anat Pathol 2010;17:419427.Google Scholar
Lechapt-Zalcman, E, Chapon, F, Guillamo, JS, Khouri, S, Menegalli-Boggelli, D, Loussouarn, D, et al. Long-term clinicopathological observations on a papillary tumour of the pineal region. Neuropathol Appl Neurobiol 2011;37:431435.Google Scholar
Chang, AH, Fuller, GN, Debnam, JM, Karis, JP, Coons, SW, Ross, JS, et al. MR imaging of papillary tumor of the pineal region. AJNR Am J Neuroradiol 2008;29:187189.Google Scholar
Komakula, S, Warmuth-Metz, M, Hildenbrand, P, Loevner, L, Hewlett, R, Salzman, K, et al. Pineal parenchymal tumor of intermediate differentiation: imaging spectrum of an unusual tumor in 11 cases. Neuroradiology 2010;53:577584.Google Scholar
Osborn, AG, Salzman, KL, Thurnher, MM, Rees, JH, Castillo, M. The new World Health Organization classification of central nervous system tumors: what can the neuroradiologist really say? AJNR Am J Neuroradiol 2012;33:795802.Google Scholar
Kawabata, Y, Takahashi, JA, Arakawa, Y, Shirahata, M, Hashimoto, N. Long term outcomes in patients with intracranial germinomas: a single institution experience of irradiation with or without chemotherapy. J Neurooncol 2008;88:161167.Google Scholar
Ganti, SR, Hilal, SK, Stein, BM, Silver, AJ, Mawad, M, Sane, P. CT of pineal region tumors. AJR Am J Roentgenol 1986;146:451458.Google Scholar
Liang, L, Korogi, Y, Sugahara, T, Ikushima, I, Shigematsu, Y, Okuda, T, et al. MRI of intracranial germ-cell tumours. Neuroradiology 2002;44:382388.Google Scholar
Kendi, TK, Çaglar, S, Huvaj, S, Bademci, G, Kendi, M, Alparslan, S. Suprasellar germ cell tumor with subarachnoid seeding MRI and MR spectroscopy findings. J Clin Imaging 2004;28:404407.Google Scholar
Kyritsis, AP. Management of primary intracranial germ cell tumors. J Neurooncol 2010;96:143149.Google Scholar
Izumihara, A, Orita, T, Tsurutani, T, Kajiwara, K, Matsunaga, T, Hatano, M. Pineal and suprasellar metastasis of lung cancer: case report and review of the literature. Comput Med Imaging Graph 1995;19:435437.CrossRefGoogle ScholarPubMed
Schuster, JM, Rostomily, RC, Hahn, C, Winn, HR. Two cases of esophageal carcinoma metastatic to the pineal region with a review of the literature. Surg Neurol 1998;49:100102; discussion 102–103.Google Scholar
Hirato, J, Nakazato, Y. Pathology of pineal region tumors. J Neurooncol 2001;54:239249.Google Scholar
Saleem, SN, Said, A-HM, Lee, DH. Lesions of the Hypothalamus: MR imaging diagnostic features. Radiographics 2007;27:10871108.Google Scholar
Saeki, N, Sunami, K, Kubota, M, Murai, H, Takanashi, J, Iuchi, T, et al. Heavily T2-weighted MR imaging of white matter tracts in the hypothalamus: normal and pathologic demonstrations. AJNR Am J Neuroradiol 2001;22:14681475.Google Scholar
Miller, MJ, Mark, LP, Yetkin, FZ, Ho, KC, Haughton, VM, Estkowski, L, et al. Imaging white matter tracts and nuclei of the hypothalamus: an MR-anatomic comparative study. AJNR Am J Neuroradiol 1994;15:117121.Google Scholar
Castillo, M. Pituitary gland: development, normal appearances, and magnetic resonance imaging protocols. Top Magn Reson Imaging 2005;16:259268.Google Scholar
Ouyang, T, Rothfus, WE, Ng, JM, Challinor, SM. Imaging of the pituitary. Radiol Clin North Am 2011;49:549–71–vii.Google Scholar
Hess, CP, Dillon, WP. Imaging the pituitary and parasellar region. Neurosurg Clin North Am 2012;23:529542.Google Scholar
Cox, TD, Elster, AD. Normal pituitary gland: changes in shape, size, and signal intensity during the 1st year of life at MR imaging. Radiology 1991;179:721724.Google Scholar
Elster, AD, Sanders, TG, Vines, FS, Chen, MY. Size and shape of the pituitary gland during pregnancy and post partum: measurement with MR imaging. Radiology 1991;181:531535.Google Scholar
Terano, T, Seya, A, Tamura, Y, Yoshida, S, Hirayama, T. Characteristics of the pituitary gland in elderly subjects from magnetic resonance images: relationship to pituitary hormone secretion. Clin Endocrinol (Oxf) 1996;45:273279.Google Scholar
Spampinato, MV, Castillo, M. Congenital pathology of the pituitary gland and parasellar region. Top Magn Reson Imaging 2005;16:269276.Google Scholar
Weissenberger, AA, Dell, ML, Liow, K, Theodore, W, Frattali, CM, Hernandez, D, et al. Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 2001;40:696703.Google Scholar
Nguyen, D, Singh, S, Zaatreh, M, Novotny, E, Levy, S, Testa, F, et al. Hypothalamic hamartomas: seven cases and review of the literature. Epilepsy Behav 2003;4:246258.Google Scholar
Guibaud, L, Rode, V, Saint-Pierre, G, Pracros, JP, Foray, P, Tran-Minh, VA. Giant hypothalamic hamartoma: an unusual neonatal tumor. Pediatr Radiol 1995;25:1718.Google Scholar
Freeman, JL, Coleman, LT, Wellard, RM, Kean, MJ, Rosenfeld, JV, Jackson, GD, et al. MR imaging and spectroscopic study of epileptogenic hypothalamic hamartomas: analysis of 72 cases. AJNR Am J Neuroradiol 2004;25:450462.Google Scholar
Amstutz, DR, Coons, SW, Kerrigan, JF, Rekate, HL, Heiserman, JE. Hypothalamic hamartomas: correlation of MR imaging and spectroscopic findings with tumor glial content. AJNR Am J Neuroradiol 2006;27:794798.Google Scholar
Echevarría, ME, Fangusaro, J, Goldman, S. Pediatric central nervous system germ cell tumors: a review. Oncologist 2008;13:690699.Google Scholar
Kollias, SS, Barkovich, AJ, Edwards, MS. Magnetic resonance analysis of suprasellar tumors of childhood. Pediatr Neurosurg 1991;17:284303.Google Scholar
Mootha, SL, Barkovich, AJ, Grumbach, MM, Edwards, MS, Gitelman, SE, Kaplan, SL, et al. Idiopathic hypothalamic diabetes insipidus, pituitary stalk thickening, and the occult intracranial germinoma in children and adolescents. J Clin Endocrinol Metab 1997;82:13621367.Google Scholar
Ruscalleda, J. Imaging of parasellar lesions. Eur Radiol 2005;15:549559.Google Scholar
Byun, WM, Kim, OL, Kim, D. MR imaging findings of Rathke cleft cysts: significance of intracystic nodules. AJNR Am J Neuroradiol 2000;21:485488.Google Scholar
Wenger, M, Simko, M, Markwalder, R, Taub, E. An entirely suprasellar Rathke cleft cyst: case report and review of the literature. J Clin Neurosci 2001;8:564567.Google Scholar
Rao, VJ, James, RA, Mitra, D. Imaging characteristics of common suprasellar lesions with emphasis on MRI findings. Clin Radiol 2008;63:939947.Google Scholar
Lucas, JW, Zada, G. Imaging of the pituitary and parasellar region. Semin Neurol 2012;32:320331.Google Scholar
Choi, SH, Kwon, BJ, Na, DG, Kim, JH, Han, MH, Chang, KH. Pituitary adenoma, craniopharyngioma, and Rathke cleft cyst involving both intrasellar and suprasellar regions: differentiation using MRI. Clin Radiol 2007;62:453462.Google Scholar
Hershey, BL. Suprasellar masses: diagnosis and differential diagnosis. Semin Ultrasound CT MR. 1993;14:215231.Google Scholar
Pant, I, Suri, V, Chaturvedi, S, Dua, R, Kanodia, AK. Ganglioglioma of optic chiasma: case report and review of literature. Childs Nerv Syst 2006;22:717720.Google Scholar
Johnsen, DE, Woodruff, WW, Allen, IS, Cera, PJ, Funkhouser, GR, Coleman, LL. MR imaging of the sellar and juxtasellar regions. Radiographics 1991;11:727758.Google Scholar
Symonsx, SP, Montanera, WJ, Aviv, RI, Kucharczyk, W. The sella turcica and parasellar region. In Atlas, SW, ed. Magnetic Resonance Imaging of the Brain and Spine, 4th edn. Philadelphia, PA: Lippincott Williams & Wilkins, 2008: 11201192.Google Scholar
Chung, SM. Neuro-ophthalmic manifestations of pituitary tumors. Neurosurg Clin North Am 1999;10:717729.Google Scholar
Kucharczyk, W, Davis, DO, Kelly, WM, Sze, G, Norman, D, Newton, TH. Pituitary adenomas: high-resolution MR imaging at 1.5 T. Radiology 1986;161:761765.Google Scholar
Ahmadi, H, Larsson, E-M, Jinkins, JR. Normal pituitary gland: coronal MR imaging of infundibular tilt. Radiology 1990;177:389392.Google Scholar
Teramoto, A, Hirakawa, K, Sanno, N, Osamura, Y. Incidental pituitary lesions in 1000 unselected autopsy specimens. Radiology 1994;193:161164.Google Scholar
Elster, AD. Modern imaging of the pituitary. Radiology 1993;187:114.Google Scholar
Hagiwara, A, Inoue, Y, Wakasa, K, Haba, T, Tashiro, T, Miyamoto, T. Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 2003;228:533538.Google Scholar
Patronas, N. Spoiled gradient recalled acquisition in the steady state technique is superior to conventional postcontrast spin echo technique for magnetic resonance imaging detection of adrenocorticotropin-secreting pituitary tumors. J Clin Endocrinol Metab 2003;88:15651569.Google Scholar
Tomycz, ND, Horowitz, MB. Inferior petrosal sinus sampling in the diagnosis of sellar neuropathology. Neurosurg Clin North Am 2009;20:361367.Google Scholar
Swearingen, B. Diagnostic errors after inferior petrosal sinus sampling. J Clin Endocrinol Metab 2004;89:37523763.Google Scholar
Cottier, JP, Destrieux, C, Brunereau, L, Bertrand, P, Moreau, L, Jan, M, et al. Cavernous sinus invasion by pituitary adenoma: MR imaging. Radiology 2000;215:463469.Google Scholar
Vieira, JO Jr., Cukiert, A, Liberman, B. Evaluation of magnetic resonance imaging criteria for cavernous sinus invasion in patients with pituitary adenomas: logistic regression analysis and correlation with surgical findings. Surg Neurol 2006;65:130135.Google Scholar
Ragel, BT, Couldwell, WT. Pituitary carcinoma: a review of the literature. Neurosurg Focus 2004;16:E7.Google Scholar
Heaney, AP. Pituitary carcinoma: difficult diagnosis and treatment. J Clin Endocrinol Metab 2011;96:36493660.Google Scholar
Pernicone, PJ, Scheithauer, BW, Sebo, TJ, Kovacs, KT, Horvath, E, Young, WF, et al. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 1997;79:804812.Google Scholar
Matsuki, M, Kaji, Y, Matsuo, M, Kobashi, Y. MR findings of subarachnoid dissemination of a pituitary adenoma. Br J Radiol 2000;73:783785.Google Scholar
Demssie, YN, Joseph, J, Dawson, T, Roberts, G, Carpentier, J, Howell, S. Recurrent spindle cell oncocytoma of the pituitary, a case report and review of literature. Pituitary 2009;14:367370.Google Scholar
Kurkjian, C, Armor, JF, Kamble, R, Ozer, H, Kharfan-Dabaja, MA. Symptomatic metastases to the pituitary infundibulum resulting from primary breast cancer. Int J Clin Oncol 2005;10:191194.Google Scholar
Fassett, DR, Couldwell, WT. Metastases to the pituitary gland. Neurosurg Focus 2004;16:E8.Google Scholar
Verrees, M, Arafah, BM, Selman, WR. Pituitary tumor apoplexy: characteristics, treatment, and outcomes. Neurosurg Focus 2004;16:E6.Google Scholar
Schrager, S, Sabo, L. Sheehan syndrome: a rare complication of postpartum hemorrhage. J Am Board Fam Pract 2001;14:389391.Google Scholar
Bonneville, F, Cattin, F, Marsot-Dupuch, K, Dormont, D, Bonneville, JF, Chiras, J. T1 signal hyperintensity in the sellar region: spectrum of findings. Radiographics 2006;26:93113.Google Scholar
Piotin, M, Tampieri, D, Rüfenacht, DA, Mohr, G, Garant, M, Del Carpio, R, et al. The various MRI patterns of pituitary apoplexy. Eur Radiol 1999;9:918923.Google Scholar
Prayer, D, Grois, N, Prosch, H, Gadner, H, Barkovich, AJ. MR imaging presentation of intracranial disease associated with Langerhans cell histiocytosis. AJNR Am J Neuroradiol 2004;25:880891.Google Scholar
Spencer, TS, Campellone, JV, Maldonado, I, Huang, N, Usmani, Q, Reginato, AJ. Clinical and magnetic resonance imaging manifestations of neurosarcoidosis. Semin Arthritis Rheum 2005;34:649661.Google Scholar
Lury, KM, Smith, JK, Matheus, MG, Castillo, M. Neurosarcoidosis: review of imaging findings. Semin Roentgenol 2004;39:495504.Google Scholar
Pisaneschi, M, Kapoor, G. Imaging the sella and parasellar region. Neuroimaging Clin North Am 2005;15:203219.Google Scholar
Carmichael, JD. Update on the diagnosis and management of hypophysitis. Curr Opin Endocrinol Diabetes Obes 2012;19:314321.Google Scholar
Caturegli, P, Newschaffer, C, Olivi, A, Pomper, MG, Burger, PC, Rose, NR. Autoimmune hypophysitis. Endocr Rev 2005;26:599614.Google Scholar
Gutenberg, A, Larsen, J, Lupi, I, Rohde, V, Caturegli, P. A radiologic score to distinguish autoimmune hypophysitis from nonsecreting pituitary adenoma preoperatively. AJNR Am J Neuroradiol 2009;30:17661772.Google Scholar
Nakata, Y, Sato, N, Masumoto, T, Mori, H, Akai, H, Nobusawa, H, et al. Parasellar T2 dark sign on MR imaging in patients with lymphocytic hypophysitis. AJNR Am J Neuroradiol 2010;31:19441950.Google Scholar
Shi, J, Zhang, J-M, Wu, Q, Chen, G, Zhang, H, Bo, W-L. Granulomatous hypophysitis: two case reports and literature review. J Zhejiang Univ Sci B 2009;10:552558.Google Scholar
Niyazoglu, M, Celik, O, Bakkaloglu, DV, Oz, B, Tanriöver, N, Gazioglu, N, et al. Xanthomatous hypophysitis. J Clin Neurosci 2012;19:17421744.Google Scholar
Leporati, P, Landek-Salgado, MA, Lupi, I, Chiovato, L, Caturegli, P. IgG4-related hypophysitis: a new addition to the hypophysitis spectrum. J Clin Endocrinol Metab 2011;96:19711980.Google Scholar
Carpenter, KJ, Murtagh, RD, Lilienfeld, H, Weber, J, Murtagh, FR. Ipilimumab-induced hypophysitis: MR imaging findings. AJNR Am J Neuroradiol 2009;30:17511753.Google Scholar
Branstetter, BF, Weissman, JL. Normal anatomy of the neck with CT and MR imaging correlation. Radiol Clin North Am 2000;38:925–40–ix.Google Scholar
Loevner, LA. Thyroid and parathyroid glands: anatomy and pathology. In Som, PM, Curtin, HD, eds. Head and Neck Imaging, 4th edn. St. Louis, MO: Mosby, 2002:21342171.Google Scholar
Loevner, LA, Kaplan, SL, Cunnane, ME, Moonis, G. Cross-sectional imaging of the thyroid gland. Neuroimaging Clin North Am 2008;18:445461.Google Scholar
Sekiya, T, Tada, S, Kawakami, K, Kino, M, Fukuda, K, Watanabe, H. Clinical application of computed tomography to thyroid disease. Comput Tomogr 1979;3:185193.Google Scholar
Weber, AL, Randolph, G, Aksoy, FG. The thyroid and parathyroid glands. CT and MR imaging and correlation with pathology and clinical findings. Radiol Clin North Am 2000;38:11051129.CrossRefGoogle Scholar
Hegedus, L. Management of simple nodular goiter: current status and future perspectives. Endocr Rev 2003;24:102132.Google Scholar
Noma, S, Kanaoka, M, Minami, S, Sagoh, T, Yamashita, K, Nishimura, K, et al. Thyroid masses: MR imaging and pathologic correlation. Radiology 1988;168:759764.Google Scholar
Sholosh, B, Borhani, AA. Thyroid ultrasound part 1: technique and diffuse disease. Radiol Clin North Am 2011;49:391416–v.Google Scholar
Kaneko, T, Matsumoto, M, Fukui, K, Hori, T, Katayama, K. Clinical evaluation of thyroid CT values in various thyroid conditions. J Comput Tomogr 1979;3:14.Google Scholar
Pearce, EN, Farwell, AP, Braverman, LE. Thyroiditis. N Engl J Med 2003;348:26462655.Google Scholar
Holm, L-E, Blomgren, H, Löwhagen, T. Cancer risks in patients with chronic lymphocytic thyroiditis. N Engl J Med 1985;312:601604.Google Scholar
Gefter, WB, Spritzer, CE, Eisenberg, B, LiVolsi, VA, Axel, L, Velchik, M, et al. Thyroid imaging with high-field-strength surface-coil MR. Radiology 1987;164:483490.Google Scholar
Jhaveri, K, Shroff, MM, Fatterpekar, GM, Som, PM. CT and MR imaging findings associated with subacute thyroiditis. AJNR Am J Neuroradiol 2003;24:143146.Google Scholar
Fujita, A, Sakai, O, Chapman, MN, Sugimoto H. IgG4-related disease of the head and neck: CT and MR imaging manifestations. Radiographics 2012;32:19451958.Google Scholar
Papi, G, LiVolsi, VA. Current concepts on Riedel thyroiditis. Pathol Pattern Rev 2004;121:5063.Google Scholar
Takai, SI, Miyauchi, A, Matsuzuka, F, Kuma, K, Kosaki, G. Internal fistula as a route of infection in acute suppurative thyroiditis. Lancet 1979;i:751752.Google Scholar
Paes, JE, Burman, KD, Cohen, J, Franklyn, J, McHenry, CR, Shoham, S, et al. Acute bacterial suppurative thyroiditis: a clinical review and expert opinion. Thyroid 2010;20:247255.Google Scholar
Masuoka, H, Miyauchi, A, Tomoda, C, Inoue, H, Takamura, Y, Ito, Y, et al. Imaging studies in sixty patients with acute suppurative thyroiditis. Thyroid 2011;21:10751080.Google Scholar
Su, D-H, Huang, T-S. Acute suppurative thyroiditis caused by Salmonella typhimurium: a case report and review of the literature. Thyroid 2002;12:10231027.Google Scholar
Henrichsen, TL, Reading, CC. Thyroid ultrasonography. Part 2: nodules. Radiol Clin North Am 2011;49:417424.Google Scholar
Carcangiu, ML, Zampi, G, Pupi, A, Castagnoli, A, Rosai, J. Papillary carcinoma of the thyroid. A clinicopathologic study of 241 cases treated at the University of Florence, Italy. Cancer 1985;55:805828.Google Scholar
Som, PM, Brandwein, M, Lidov, M, Lawson, W, Biller, HF. The varied presentations of papillary thyroid carcinoma cervical nodal disease: CT and MR findings. AJNR Am J Neuroradiol 1994;15:11231128.Google Scholar
Lee, B, Cook, G, John, L, Harrington, K, Nutting, C. Follicular thyroid carcinoma metastasis to the esophagus detected by 18FDG PET/CT. Thyroid 2008;18:267271.Google Scholar
Franssila, KO, Ackerman, LV, Brown, CL, Hedinger, CE. Follicular carcinoma. Semin Diagn Pathol 1985;2:101122.Google Scholar
Pacini, F, Castagna, MG, Cipri, C, Schlumberger, M. Medullary thyroid carcinoma. Clin Oncol 2010;22:475485.Google Scholar
114.American Thyroid Association Guidelines Task Force, Kloos, RT, Eng, C, Evans, DB, Francis, GL, Gagel, RF, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009; 19:565612.Google Scholar
115.O'Neill, JP, Shaha, AR. Anaplastic thyroid cancer. Oral Oncol 2013;49:702706.Google Scholar
116.Takashima, S, Morimoto, S, Ikezoe, J, Takai, S, Kobayashi, T, Koyama, H, et al. CT evaluation of anaplastic thyroid carcinoma. AJR Am J Roentgenol 1990;154:10791085.Google Scholar
117.Graff-Baker, A, Sosa, JA, Roman, SA. Primary thyroid lymphoma: a review of recent developments in diagnosis and histology-driven treatment. Curr Opin Oncol 2010;22:1722.Google Scholar
118.Shibata, T, Noma, S, Nakano, Y, Konishi, J. Primary thyroid lymphoma: MR appearance. J Comput Assist Tomogr 1991;15:629633.Google Scholar
119.Johnson, NA, Carty, SE, Tublin, ME. Parathyroid imaging. Radiol Clin North Am 2011;49:489509, vi.Google Scholar
120.Ruda, JM, Hollenbeak, CS, Stack, BC. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003. Otolaryngol Head Neck Surg 2005;132:359372.Google Scholar
Siperstein, A, Berber, E, Mackey, R, Alghoul, M, Wagner, K, Milas, M. Prospective evaluation of sestamibi scan, ultrasonography, and rapid PTH to predict the success of limited exploration for sporadic primary hyperparathyroidism. Surgery 2004;136:872880.Google Scholar
Johnson, NA, Tublin, ME, Ogilvie, JB. Parathyroid imaging: technique and role in the preoperative evaluation of primary hyperparathyroidism. AJR Am J Roentgenol 2007;188:17061715.Google Scholar
Grant, CS, Thompson, G, Farley, D, van Heerden, J. Primary hyperparathyroidism surgical management since the introduction of minimally invasive parathyroidectomy: Mayo Clinic experience. Arch Surg 2005;140:472478; discussion 478–479.Google Scholar
Suliburk, JW, Perrier, ND. Primary hyperparathyroidism. Oncologist 2007;12:644653.Google Scholar
Phillips, CD, Shatzkes DR. Imaging of the parathyroid glands. Semin Ultrasound CT MR 2012;33:123129.Google Scholar
Rodgers, SE, Hunter, GJ, Hamberg, LM, Schellingerhout, D, Doherty, DB, Ayers, GD, et al. Improved preoperative planning for directed parathyroidectomy with 4-dimensional computed tomography. Surgery 2006;140:932940; discussion940–941.Google Scholar
Beland, MD, Mayo-Smith, WW, Grand, DJ, Machan, JT, Monchik, JM. Dynamic MDCT for localization of occult parathyroid adenomas in 26 patients with primary hyperparathyroidism. AJR Am J Roentgenol 2011;196:6165.Google Scholar
Chazen, JL, Gupta, A, Dunning, A, Phillips, CD. Diagnostic accuracy of 4D-CT for parathyroid adenomas and hyperplasia. AJNR Am J Neuroradiol 2012;33:429433.Google Scholar
Sillery, JC, DeLone, DR, Welker, KM. Cystic parathyroid adenomas on dynamic CT. AJNR Am J Neuroradiol 2011;32:E107E109.Google Scholar
Auffermann, W, Guis, M, Tavares, NJ, Clark, OH, Higgins, CB. MR signal intensity of parathyroid adenomas: correlation with histopathology. AJR Am J Roentgenol 1989;153:873876.Google Scholar
Seelos, KC, DeMarco, R, Clark, OH, Higgins, CB. Persistent and recurrent hyperparathyroidism: assessment with gadopentetate dimeglumine-enhanced MR imaging. Radiology 1990;177:373378.Google Scholar
Chien, D, Jacene, H. Imaging of parathyroid glands. Otolaryngol Clin North Am 2010;43:399415, x.Google Scholar
Dudney, WC, Bodenner, D, Stack, BC. Parathyroid carcinoma. Otolaryngol Clin North Am 2010;43:441453, xi.Google Scholar
Wei, CH, Harari, A. Parathyroid carcinoma: update and guidelines for management. Curr Treat Options Oncol 2012;13:1123.Google Scholar
Harari, A, Waring, A, Fernandez-Ranvier, G, Hwang, J, Suh, I, Mitmaker, E, et al. Parathyroid carcinoma: a 43-year outcome and survival analysis. J Clin Endocrinol Metab 2011;96:36793686.Google Scholar
Sidhu, PS, Talat, N, Patel, P, Mulholland, NJ, Schulte, K-M. Ultrasound features of malignancy in the preoperative diagnosis of parathyroid cancer: a retrospective analysis of parathyroid tumours larger than 15 mm. Eur Radiol 2011;21:18651873.Google Scholar
Rawat, N, Khetan, N, Williams, DW, Baxter, JN. Parathyroid carcinoma. Br J Surg 2005;92:13451353.Google Scholar
Kebebew, E, Arici, C, Duh, QY, Clark, OH. Localization and reoperation results for persistent and recurrent parathyroid carcinoma. Arch Surg 2001;136:878885.Google Scholar

References

Breatnach, E, Abbott, GC, Fraser, RG. Dimensions of the normal human trachea. AJR Am J Roentgenol 1984;142:903906.Google Scholar
Ugalde, P, Miro, S, Frechette, E, Deslauriers, J. Correlative anatomy for thoracic inlet; glottis and subglottis; trachea, carina, and main bronchi; lobes, fissures, and segments; hilum and pulmonary vascular system; bronchial arteries and lymphatics. Thorac Surg Clin 2007;17:639659.Google Scholar
Mayr, B, Ingrisch, H, Haussinger, K, Huber, RM, Sunder-Plassmann, L. Tumors of the bronchi: role of evaluation with CT. Radiology 1989;172:647652.Google Scholar
Naidich, DP, Lee, JJ, Garay, SM, McCauley, DI, Aranda, CP, Boyd, AD. Comparison of CT and fiberoptic bronchoscopy in the evaluation of bronchial disease. AJR Am J Roentgenol 1987;148:17.Google Scholar
Travis, WD. Advances in neuroendocrine lung tumors. Ann Oncol 2010;21(suppl 7): vii65vii71.Google Scholar
Rosado de Christenson, ML, Abbott, GF, Kirejczyk, WM, Galvin, JR, Travis, WD. Thoracic carcinoids: radiologic-pathologic correlation. Radiographics 1999;19:707736.Google Scholar
Fischbach, F, Knollmann, F, Griesshaber, V, Freund, T, Akkol, E, Felix, R. Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness. Eur Radiol 2003;13:23782383.Google Scholar
Meisinger, QC, Klein, JS, Butnor, KJ, Gentchos, G, Leavitt, BJ. CT features of peripheral pulmonary carcinoid tumors. AJR Am J Roentgenol 2011;197:10731080.Google Scholar
Nessi, R, Basso Ricci, P, Basso Ricci, S, Bosco, M, Blanc, M, Uslenghi, C. Bronchial carcinoid tumors: radiologic observations in 49 cases. J Thorac Imaging 1991;6:4753.Google Scholar
Magid, D, Siegelman, SS, Eggleston, JC, Fishman, EK, Zerhouni, EA. Pulmonary carcinoid tumors: CT assessment. J Comput Assist Tomogr 1989;13:244247.Google Scholar
Zwiebel, BR, Austin, JHM, Grimes, MM. Bronchial carcinoid tumors: assessment with CT of location and intratumoral calcification in 31 patients. Radiology 1991;179:483486.Google Scholar
Chong, S, Lee, KS, Chung, MJ, Han, J, Kwon, OJ, Kim, TS. Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics 2006;26:4157.Google Scholar
Benson, REC, Rosado de Christenson, ML, Martínez-Jiménez, S, Kunin, JR, Pettavel, PP. Spectrum of pulmonary neuroendocrine proliferations and neoplasms. Radiographics 2013;33:16311649.Google Scholar
Naidich, DP. CT/MR correlation in the evaluation of tracheobronchial neoplasia. Radiol Clin North Am 1990;28:555571.Google Scholar
Akata, S, Okada, S, Maeda, J, Jinho, P, Yoshimura, M, Saito, K, et al. Computed tomographic findings of large cell neuroendocrine carcinoma of the lung. Clin Imaging 2007;31:379384.Google Scholar
Zwirewich, CV, Vedal, S, Miller, RR, Muller, NL. Solitary pulmonary nodule: high-resolution CT and radiologic–pathologic correlation. Radiology 1991;179:469476.Google Scholar
Oshiro, Y, Kusumoto, M, Matsuno, Y, Asamura, H, Tsuchiya, R, Terasaki, H, et al. CT findings of surgically resected large cell neuroendocrine carcinoma of the lung in 38 patients. AJR Am J Roentgenol 2004;182:8791.Google Scholar
Jung, KJ, Lee, KS, Han, J, Kwon, OJ, Kim, J, Shim, YM, et al. Large cell neuroendocrine carcinoma of the lung: clinical, CT, and pathologic findings in 11 patients. J Thorac Imaging 2001;16:156162.Google Scholar
Takamochi, K, Yokose, T, Yoshida, J, Nishimura, M, Ohmatsu, H, Nagai, K, et al. Calcification in large cell neuroendocrine carcinoma of the lung. Jpn J Clin Oncol 2003;33:1013.Google Scholar
Shin, AR, Shin, BK, Choi, JA, Oh, YW, Kim, HK, Kang, EY. Large cell neuroendocrine carcinoma of the lung: radiologic and pathologic findings. J Comput Assist Tomogr 2000;24:567573.Google Scholar
Quoix, E, Fraser, R, Wolkove, N, Finkelstein, H, Kreisman, H. Small cell lung cancer presenting as a solitary pulmonary nodule. Cancer 1990;66:577582.Google Scholar
Yabuuchi, H, Murayama, S, Sakai, S, Hashiguchi, N, Murakami, J, Muranaka, T, et al. Resected peripheral small cell carcinoma of the lung: computed tomographic-histologic correlation. J Thorac Imaging 1999;14:105108.Google Scholar
Pearlberg, JL, Sandler, MA, Lewis, JW Jr., Beute, GH, Alpern, MB. Small-cell bronchogenic carcinoma:CT evaluation. AJR 1988;150:265268.Google Scholar
Chong, S, Lee, KS. Spectrum of findings and usefulness of integrated PET/CT in patients with known or suspected neuroendocrine tumors of the lung. Cancer Imaging 2007;7:195201.Google Scholar
Kazawa, N, Kitaichi, M, Hiraoka, M, Togashi, K, Mio, N, Mishima, M, et al. Small cell lung carcinoma: eight types of extension and spread on computed tomography. J Comput Assist Tomogr 2006;30:653661.Google Scholar
Cameron, CM, Roberts, F, Connell, J, Sproule, MW. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: an unusual cause of cyclical ectopic adrenocorticotrophic syndrome. Br J Radiol 2011;84:e1417.Google Scholar
Davies, SJ, Gosney, JR, Hansell, DM, Wells, AU, Du Bois, RM, Burke, MM, et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: an underrecognised spectrum of disease. Thorax 2007;62:248252.Google Scholar
De Geer, G, Webb, WR, Gamsu, G. Normal thymus: assessment with MR and CT. Radiology, 1986;158:313317.Google Scholar
Baron, RL, Lee, JKT, Sagel, SS, Peterson, RR. Computed tomography of the normal thymus. Radiology 1982;142:121125.Google Scholar
Baron, RL, Lee, JKT, Sagel, SS, Robert, JL. Computed tomography of the abnormal thymus. Radiology 1982;142:127134.Google Scholar
Nasseri, F, Eftekhari, F. Clinical and radiologic review of the normal and abnormal thymus: pearls and pitfall. Radiographics 2010;30: 413428.Google Scholar
Kissin, CM, Husband, JE, Nicholas, D, Eversman, W. Benign thymic enlargement in adults after chemotherapy: CT demonstration. Radiology 1987;163:6770.Google Scholar
Takahashi, K, Inaoka, T, Murakami, N, Hirota, H, Iwata, K, Nagasawa, K, et al. Characterization of the normal and hyperplastic thymus on chemical-shift MR imaging. AJR Am J Roentgenol 2003;180:12651269.Google Scholar
Inaoka, T, Takahashi, K, Mineta, M, Yamada, T, Shuke, N, Okizaki, A, et al. Thymic hyperplasia and thymus gland tumors: differentiation with chemical shift MR imaging. Radiology 2007;243:869876.Google Scholar
Araki, T, Sholl, LM, Gerbaudo, VH, Hatabu, H, Nishino, M. Imaging characteristics of pathologically proven thymic hyperplasia: identifying features that can differentiate true from lymphoid hyperplasia. AJR Am J Roentgenol 2014;202:471478.Google Scholar
Klemm, KM, Moran, CA. Primary neuroendocrine carcinomas of the thymus. Semin Diagn Pathol 1999;16:3241.Google Scholar
Dwivedi, AN, Goel, K, Tripathi, S, Garg, S, Rai, M. Primary neuroendocrine mediastinal tumor presenting with carcinoid syndrome and left supraclavicular lymphadenopathy: clinico-radiological and pathological features. Cancer Res Ther 2013;9:278280.Google Scholar
Strollo, DC, Rosado de Christenson, ML, Jett, JR. Primary mediastinal tumors. Part II. Tumors of the middle and posterior mediastinum. Chest 1997;112:13441357.Google Scholar
Lonergan, GJ, Schwab, CM, Suarez, ES, Carlson, CL. From the Archives of the AFIP neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics 2002;22:911934.Google Scholar
Lee, JKT, Sagel, SS, Stanley, RJ, Heiken, JP eds. Computed Body Tomography with MRI Correlation, Ch. 6. Philadelphia, PA: Lippincott Williams & Wilkins, 2006: 341342.Google Scholar

References

Fitzgerald, TL, Hickner, ZJ, Schmitz, M, Kort, EJ.Changing incidence of pancreatic neoplasms: a 16-year review of statewide tumor registry. Pancreas 2008;37:134138.Google Scholar
Pais, SA, Al-Haddad, M, Mohamadnejad, M, Leblanc, JK, Sherman, S, McHenry, L, et al. EUS for pancreatic neuroendocrine tumors: a single-center, 11-year experience. Gastrointest Endosc 2010;71:11851193.Google Scholar
Tan, EH, Tan, CH. Imaging of gastropancreatic neuroendocrine tumors. World J Clin Oncol 2011;2:2843.Google Scholar
Gallotti, A, Johnston, RP, Bonaffini, PA, Ingkakul, T, Deshpande, V, Fernández del Castillo, C, et al. Incidental neuroendocrine tumors of the pancreas: MDCT findings and features of malignancy. AJR Am J Roentgenol 2013;200:355362.Google Scholar
Lairmore, TC, Moley, JF. Endocrine pancreatic tumors. Scand J Surg 2004;93:311315.Google Scholar
Sundin, A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol 2012;26:803818.Google Scholar
Lewis, RB, Lattin, GE Jr., Paal, E. Pancreatic endocrine tumors: radiologic-clinicopathologic correlation. Radiographics 2010;30:14451464.Google Scholar
McAuley, G, Delaney, H, Colville, J, Lyburn, I, Worsley, D, Govender, P, et al. Multimodality preoperative imaging of pancreatic insulinomas. Clin Radiol 2005;60:10391050.Google Scholar
Chen, X, Cai, WY, Yang, WP, Li, HW. Pancreatic insulinomas:diagnosis and surgical treatment of 74 patients. Hepatob Pancreat Dis Int 2002;1:458461.Google Scholar
Rappeport, ED, Hansen, CP, Kjaer, A, Knigge, U. Multidetector computed tomography and neuroendocrine pancreaticoduodenal tumors. Acta Radiol 2006;47:248256.Google Scholar
Ellison, EC, Sparks, J, Verducci, JS, Johnson, JA, Muscarella, P, Bloomston, M, et al. 50-year appraisal of gastrinoma: recommendations for staging and treatment. J Am Coll Surg 2006;202:897905.Google Scholar
Ichikawa, T, Peterson, MS, Federle, MP, Baron, RL, Haradome, H, Kawamori, Y, et al. Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology 2000;216:163171.Google Scholar
Thoeni, RF, Mueller-Lisse, UG, Chan, R, Do, NK, Shyn, PB. Detection of small, functional islet cell tumors in the pancreas: selection of MR imaging sequences for optimal sensitivity. Radiology 2000;214:483490.Google Scholar
Brenner, R, Metens, T, Bali, M, Demetter, P, Matos, C. Pancreatic neuroendocrine tumor:added value of fusion of T2-weighted imaging and high b-value diffusion-weighted imaging for tumor detection. Eur J Radiol 2012;81:e746e749.Google Scholar
Bakir, B, Salmaslioglu, A, Poyanli, A, Rozanes, İ, Acunas, B. Diffusion weighted MR imaging of pancreatic islet cell tumors. Eur J Radiol 2010;74:214220.Google Scholar
Jang, KM, Kim, SH, Kim, YK, Park, MJ, Lee, MH, Hwang, J, et al. Imaging features of Samm (≤3 cm) pancreatic solid tumors on gadoxetic acid enhanced MR imaging and diffusion weighted imaging: an initial experience. Magn Reson Imaging 2012;30:916925.Google Scholar
Jang, KM, Kim, SH, Lee, SJ, Choi, D. The value of gadotexic acid-enhanced and diffusion weighted MRI for prediction of grading of pancreatic neuroendocrine tumors. Acta Radiol 2014;55:140–148.Google Scholar
Lewis, RB, Mehrotra, AK, Rodriguez, P, Levine, MS. From the radiologic pathology archives: esophageal neoplasms: radiologic-pathologic correlation. Radiographics 2013;33:10831108.Google Scholar
Montgomery, E, Field, JK, Boffetta, P, et al. Tumours of the oesophagus. In Bosman, FT, Carneiro, F, Hruban, RH, Theise, ND, eds. WHO Classification of of Tumours of the Digestive System, 4th edn. Lyon: International Agency for Research on Cancer, 2010:1537.Google Scholar
Trivers, KF, Sabatino, SA, Stewart, SL. Trends in esophageal cancer incidence by histology, United States, 1998–2003. Int J Cancer 2008;123:14221428.Google Scholar
Maru, DM, Khurana, H, Rashid, A, Correa, AM, Anandasabapathy, S, Krishnan, S, et al. Retrospective study of clinicopathologic features and prognosis of high-grade neuroendocrine carcinoma of the esophagus. Am J Surg Pathol 2008;32:14041411.Google Scholar
Chang, S, Choi, D, Lee, SJ, Lee, WJ, Park, MH, Kim, SW, et al. Neuroendocrine neoplasms of the gastrointestinal tract: classification, pathologic basis, and imaging features Radiographics 2007;27: 16671679.Google Scholar
Mulder, LD, Gardiner, GA, Weeks, DA. Primary small cell carcinoma of the esophagus: case presentation and review of the literature. Gastrointest Radiol 1991;16:510.Google Scholar
Levine, MS, Pantongrag-Brown, L, Buck, JL, Buetow, PC, Lowry, MA, Sobin, LH. Small-cell carcinoma of the esophagus: radiographic findings. Radiology 1996;199:703705.Google Scholar
Hoang, MP, Hobbs, CM, Sobin, LH, Albores-Saavedra, J. Carcinoid tumor of the esophagus: a clinicopathologic study of four cases. Am J Surg Pathol 2002;26:517522.Google Scholar
Lee, NK, Kim, S, Kim, GH, Jeon, TY, Kim, DH, Jang, HJ, et al. Hypervascular subepithelial gastrointestinal masses: CT-pathologic correlation. Radiographics 2010;30:19151934.Google Scholar
Modlin, IM, Lye, KD, Kidd, M. A 5-decade analysis of 13 715 carcinoid tumors. Cancer 2003;97:934959.Google Scholar
Sahani, DV, Bonaffini, PA, Castillo, CF, Blake, MA. Gastroenteropancreatic neuroendocrine tumors: role of imaging in diagnosis and management. Radiology 2013;266:3861.Google Scholar
Plöckinger, U, Rindi, G, Arnold, R, et al. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology 2004;80:394424.Google Scholar
Levy, AD, Sobin, LH. From the archives of the AFIP: gastrointestinal carcinoids: imaging features with clinicopathologic comparison. Radiographics 2007;27:237257.Google Scholar
Lehy, T, Cadiot, G, Mignon, M, Ruszniewski, P, Bonfils, S. Influence of multiple endocrine neoplasia type I on gastric endocrine cells in patients with the Zollinger–Ellison syndrome. Gut 1992;33:12751279.Google Scholar
Rindi, G, Azzoni, C, La Rosa, S, Klersy, C, Paolotti, D, Rappel, S, et al. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: prognostic evaluation by pathological analysis. Gastroenterology 1999;116:532542.Google Scholar
Heller, MT, Shah, AB. Imaging of neuroendocrine tumors. Radiol Clin North Am 2011;49:529548.Google Scholar
Hofmann, JW, Fox, PS, Wilson, SD. Duodenal wall tumors and the Zollinger–Ellison syndrome. Surgical management. Arch Surg 1973;107:334339.Google Scholar
Pipeleers-Marichal, M, Somers, G, Willems, G, Foulis, A, Imrie, C, Bishop, AE, et al. Gastrinomas in the duodenums of patients with multiple endocrine neoplasia type 1 and the Zollinger–Ellison syndrome. N Engl J Med 1990;322:723727.Google Scholar
Eriksson, B, Klöppel, G, Krenning, E, Ahlman, H, Plöckinger, U, Wiedenmann, B, et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumors: well differentiated jejunal-ileal tumor/carcinoma. Neuroendocrinology 2008;87:819.Google Scholar
Elayes, KM, Al-Hawary, MM, Jaqdish, J, Ganesh, HS, Platt, JF. CT enterography: principles, trends, and interpretation findings. Radiographics 2010;30:19551970.Google Scholar
Masseli, G, Gualdi, G. CT and MR enterography in evaluating small bowel diseases: when to use which modality? Abdom Imaging 2013;38:249259.Google Scholar
Masseli, G, Gualdi, G. MR imaging of the small bowel. Radiology 2012;264:333348.Google Scholar
Hoeffel, C, Crema, MD, Belkacem, A, Azizi, L, Lewin, M, Arrivé, L, et al. Multi-detector row CT: spectrum of diseases involving the ileocecal area. Radiographics 2006;26:13731390.Google Scholar
Sandor, A, Modlin, IM. A retrospective analysis of 1570 appendiceal carcinoids. Am J Gastroenterol 1998;93:422428.Google Scholar
Modlin, IM, Sandor, A. An analysis of 8305 cases of carcinoid tumors. Cancer 1997;79:813829.Google Scholar
Mandair, D, Caplin, ME. Colonic and rectal NETs. Best Pract Res Clin Gastroenterol 2012;26:775789.Google Scholar
Crittenden, JJ, Byllesby, J, Dodds, W. Carcinoid tumor presenting as annular lesion in the ascending colon. Radiology 1970;97:8586.Google Scholar
Schott, M, Klöppel, G, Raffel, A, Saleh, A, Knoefel, WT, Scherbaum, WA. Neuroendocrine neoplasms of the gastrointestinal tract. Dtsch Arztebl Int 2011;108:305312.Google Scholar
Modlin, IM, Oberg, K, Chung, DC, Jensen, RT, de Herder, WW, Thakker, RV, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008;9:6172.Google Scholar
Li, RK, Zhao, J, Rao, SX, Chen, CZ, Zeng, MS, Qiang, JW. Primary hepatic neuroendocrine carcinoma: MR imaging findings including preliminary observation on diffusion-weighted imaging. Abdom Imaging 2013;38:12691276.Google Scholar
Ulusan, S, Kizilkilic, O, Yildirim, T, Tercan, F, Bolat, F, Yildirim, S. Primary hepatic carcinoid tumor: dynamic CT findings. Abdom Imaging 2005;30:281285.Google Scholar
Lee, WJ, Kim, SH, Rhim, H, Rhim, H, Song, HJ, Park, CK. Three-phase helical computedtomographic findings of hepatic neuroendocrine tumors:pathologic correlation with revised WHO classification. J Comput Assist Tomogr 2011;35:697702.Google Scholar
van der Hoef, M, Crook, DW, Marincek, B, Weishaupt, D. Primary neuroendocrine tumors of the liver: MRI features in two cases. Abdom Imaging 2004;29:7781.Google Scholar
Takayasu, K, Muramatsu, Y, Sakamoto, M, Mizuguchi, Y, Moriyama, N, Wakao, F, et al. Findings in primary hepatic carcinoid tumor: US, CT, MRI and angiography. J Comput Assist Tomogr 1992;16:99102.Google Scholar
Bader, TR, Semelka, RC, Chiu, VC, Armao, DM, Woosley, JT. MRI of carcinoid tumors: spectrum of appearances in the gastrointestinal tract and liver. J Magn Reson Imaging 2001;14: 261269.Google Scholar
Iwen, KA, Klein, J, Hubold, C, Lehnert, H, Weitzel, JM. Maturity-onset diabetes of the young and hepatic adenomatosis: characterisation of a new mutation. Exp Clin Endocrinol Diabetes 2013;121:368371.Google Scholar
Bluteau, O, Jeannot, E, Bioulac-Sage, P, Marqués, JM, Blanc, JF, Bui, H, et al. Bi-alleic inactivation of TFC1 in hepatic adenomas. Nat Genet 2002;32:312315.Google Scholar
Chiche, L, Dao, T, Salame, E, Galais, MP, Bouvard, N, Schmutz, G, et al. Liver adenomatosis: reappraisal, diagnosis and surgical management. Eight new cases and review of the literature. Ann Surg 2000;231:7481.Google Scholar
Ichikawa, T, Federle, MP, Grazioli, L, Nalesnik, M. Hepatocellular adenoma: multiphasic CT and histopathology findings in 25 patients. Radiology 2000;214:861868.Google Scholar
Grazioli, L, Federle, MP, Brancatelli, G, Ichikawa, T, Olivetti, L, Blachar, A. Hepatic adenomas:imaging and pathologic findings. Radiographics 2001;21:877892.Google Scholar
Raman, SP, Hruban, RH, Fishman, EK. Hepatic adenomatosis: spectrum of imaging findings. Abdom Imaging 2013;38:474481.Google Scholar
Vincent, JM, Morrison, ID, Armstrong, P, Reznek, RH. The size of normal adrenal glands on computed tomography. Clin Radiol 1994;49:453455.Google Scholar
Sahdev, A, Willatt, J, Francis, IR, Reznek, RH. The indeterminate adrenal lesion. Cancer Imaging 2010;10:102113.Google Scholar
Boland, GW, Lee, MJ, Gazelle, GS, Halpern, EF, McNicholas, MM, Mueller, PR. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol 1998;171:201204.Google Scholar
Blake, MA, Cronin, CG, Boland, GW. Adrenal imaging. AJR Am J Roentgenol 2010;194:14501460.Google Scholar
Peña, CS, Boland, GW, Hahn, PF, Lee, MJ, Mueller, PR. Characterization of indeterminate (lipid-poor) adrenal masses: use of washout characteristics at contrast-enhanced CT. Radiology 2000;217:798802.Google Scholar
Blake, MA, Kalra, MK, Sweeney, AT, Lucey, BC, Maher, MM, Sahani, DV, et al. Distinguishing benign from malignant adrenal masses:multi-detector row CT protocol with 10-minute delay. Radiology 2006;238:578585.Google Scholar
Dunnick, NR, Korobkin, M. Imaging of adrenal incidentalomas:current status. AJR Am J Roentgenol 2002;179:559568.Google Scholar
Chung, JJ, Semelka, RC, Martin, DR. Adrenal adenomas: characteristic postgadolinium capillary blush on dynamic MR imaging. J Magn Reson Imaging 2001;13:242248.Google Scholar
Inan, N, Arslan, A, Akansel, G, Anik, Y, Balci, NC, Demirci, A. Dynamic contrast enhanced MRI in the differential diagnosis of adrenal adenomas and malignant adrenal masses. Eur J Radiol 2008;65:154162.Google Scholar
Korivi, BR, Elsayes, KM. Cross-sectional imaging work-up of adrenal masses. World J Radiol 2013;5:8897.Google Scholar
Szolar, DH, Korobkin, M, Reittner, P, Berghold, A, Bauernhofer, T, Trummer, H, et al. Adrenocortical carcinomas and adrenal pheochromocytomas: mass and enhancement loss evaluation at delayed contrast-enhanced CT. Radiology 2005;234:479485.Google Scholar
Gupta, P, Bhalla, A, Sharma, R. Bilateral adrenal lesions. J Med Imag Radiat Oncol 2012;:636645.Google Scholar
Linos, DA, Stylopoulos, N. How accurate is computed tomography in predicting the real size of adrenal tumors? A retrospective study. Arch Surg 1997;132:740743.Google Scholar
Blake, MA, Kalra, MK, Maher, MM, Sahani, DV, Sweeney, AT, Mueller, PR, et al. Pheochromocytoma:an imaging chameleon. Radiographics 2004;24(suppl 1):S87S99.Google Scholar
Ilias, I, Pacak, K. Diagnosis, localization and treatment of pheochromocytoma in MEN 2 syndrome. Endocr Regul 2009;43:8993.Google Scholar
Ikeda, DM, Francis, IR, Glazer, GM, Amendola, MA, Gross, MD, Aisen, AM. The detection of adrenal tumors and hyperplasia in patients with primary aldosteronism: comparison of scintigraphy CT, and MR imaging. AJR Am J Roentgenol 1989;153:301306.Google Scholar
Lumachi, F, Marzola, MC, Zucchetta, P, Tregnaghi, A, Cecchin, D, Favia, G, et al. Non-invasive adrenal imaging in primary aldosteronism: sensitivity and positive predictive value of radiocholesterol scintigraphy, CT scan and MRI. Nucl Med Commun 2003;24:683688.Google Scholar
Doppman, JL, Gill, JR Jr., Miller, DL, Chang, R, Gupta, R, Friedman, TC, et al. Distinction between hyperaldosteronism due to bilateral hyperplasia and unilateral aldosteronoma: reliability of CT. Radiology 1992;184:677682.Google Scholar
Lingam, RK, Sohaib, SA, Rockall, AG, Isidori, AM, Chew, S, Monson, JP, et al. Diagnostic performance of CT versus MR in detecting aldosterone-producing adenoma in primary hyperaldosteronism (Conn's syndrome). Eur Radiol 2004;14:17871792.Google Scholar
Patel, SM, Lingam, RK, Beaconsfield, TI, Tran, TL, Brown, B. Role of radiology in the management of primary aldosteronism. Radiographics 2007;:11451157.Google Scholar
Sohaib, SA, Hanson, JA, Newell-Price, JD, Trainer, PJ, Monson, JP, Grossman, AB, et al. CT appearance of the adrenal glands in adrenocorticotrophic hormone-dependent Cushing's syndrome. AJR Am J Roentgenol 1999;172:9971002.Google Scholar
Smals, AGH, Pieters, GFFM, van Haelst, UJG, Kloppenborg, PWC. Macronodular adrenocortical hyperplasia in long standing Cushing's disease. J Clin Endocrinol Metab 1984;58:2531. Crossref from ref 81.Google Scholar
Rockall, AG, Babar, SA, Sohaib, SAA, Isidori, AM, Diaz-Cano, S, Monson, JP, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics 2004;24:435452.Google Scholar
Peppercorn, PD, Reznek, RH. State-of-the-art CT and MRI of the adrenal gland. Eur Radiol 1997;7:822836.Google Scholar
Zaarour, MG, Atallah, DM, Trak-Smayra, VE, Halaby, GH. Bilateral ovary adrenal rest tumor in a congenital adrenal hyperplasia following adrenalectomy. Endocr Pract 2014;21:126.Google Scholar
Hiorns, MP, Owens, CM. Radiology of neuroblastoma in children. Eur Radiol 2001;11:20712081.Google Scholar
Schleiermacher, G, Rubie, H, Hartmann, O, Bergeron, C, Chastagner, P, Mechinaud, F, et al. Treatment of stage 4S neuroblastoma: report of 10 years' experience of the French Society of Pediatric Oncology (SFOP). Br J Cancer 2003;89: 470476.Google Scholar
Kenney, PJ, Wagner, BJ, Rao, P, Heffess, CS. Myelolipoma:CT and pathologic features. Radiology 1998;208:8795.Google Scholar
Rhodes, RE, Gaede, JT, Meyer, GA. Hemorrhagic adrenal adenoma simulating myelolipoma: CT evaluation. J Comput Assist Tomogr 1992;16:301304.Google Scholar
Yamada, T, Ishibashi, T, Saito, H, Majima, K, Tsuda, M, Takahashi, S, et al. Non-functioning adrenocortical adenomas containing fat components. Clin Radiol 2002;57:10341043.Google Scholar
Allard, P, Yankaskas, BC, Fletcher, RH, Parker, LA, Halvorsen, RA. Sensitivity and specificity of computed tomography for the detection of adrenal metastatic lesions among 91 autopsied lung cancer patients. Cancer 1990;66:457462.Google Scholar
Lam, KY, Lo, CY. Metastatic tumours of the adrenal glands: a 30-year experience in a teaching hospital. Clin Endocrinol (Oxf) 2002;56:95101.Google Scholar
Dietrich, CF, Wehrmann, T, Hoffmann, C, Herrmann, G, Caspary, WF, Seifert, H. Detection of the adrenal glands by endoscopic or transabdominal ultrasound. Endoscopy 1997;29:859864.Google Scholar
Johnson, PT, Horton, KM, Fishman, EK. Adrenal mass imaging with multidedector CT: pathologic conditions, pearls and pitfalls. Radiographics 2009;29:13331351.Google Scholar
Falchook, S, Allard, JC. CT of primary adrenal lymphoma. J Comput Assist Tomogr 1991;15:10481050.Google Scholar
Lee, FT Jr, Thornbury, JR, Grist, TM, Kelcz, F. MR imaging of adrenal lymphoma. Abdom Imaging 1993;18:9596.Google Scholar
Kato, H, Itami, J, Shiina, T, Uno, T, Arimizu, N, Fujimoto, H, et al. A MR imaging of primary adrenal lymphoma. Clin Imaging 1996;20:126128.Google Scholar
Zhou, L, Peng, W, Wang, C, Liu, X, Shen, Y, Zhou, K. Primary adrenal lymphoma: radiological; pathological, clinical correlation. Eur J Radiol 2012;81:401405.Google Scholar

References

Paneth, F, Hevesy, G. Uber Radioelemente als Indikatoren in der analytischen Chemie. Monatschr Chem 1913;34:14011407.Google Scholar
Hevesy, G, Paneth, F. Die Lӧslichkeit des Bleisulfids und Bleichromats. Z Anorg Chem 1913;82:323328.Google Scholar
Hevesy, G. The absorption and translocation of lead by plants: a contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem J 1923;17:439445.Google Scholar
Hevesy, G. Adventures in Radioisotope Research: The Collected Papers of George Hevesy. New York: Pergamon Press, 1962.Google Scholar
Rohrer, R. Nuclear physics and radiation. In Wagner, HN, Szabo, Z, Buchanan, JW, eds. Principles of Nuclear Medicine. Philadelphia, PA: WB Saunders, 1995:7294.Google Scholar
Reiss, M, Hemphill, RE, et al. Investigations of human thyroid function with the use of small doses of radioactive iodine, and the effect of thyrotrophic hormone on 131I uptake and excretion. J Endocrinol 1949;6:235243.Google Scholar
Hofstadter, R. Alkali halide scintillation counters. Phys Rev 1948;74:100101.Google Scholar
Anger, HO. Scintillation camera. Rev Sci Instrum 1958;29:2733.Google Scholar
Weiner, RE, Thakur, ML. Radiopharmaceuticals. In Sandler, MP, Coleman, RE, Patton, JA, Wackers, FJT, Gottschalk, A, eds. Diagnostic Nuclear Medicine, 4th edn. Philadelphia, PA: Lippincott Williams & Wilkins, 2003:97–115.Google Scholar
Breeman, WA, de Blois, E, Sze Chan, H, Konijnenberg, M, Kwekkeboom, DJ, Krenning, EP. (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin Nucl Med 2011;41:314321.Google Scholar
Lang, TF, Hasegawa, BH, Liew, SC, et al. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med 1992;33:18811887.Google Scholar
Beyer, T, Townsend, DW, Brun, T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41:13691379.Google Scholar
Wells, RG. CT-SPECT/CT-PET. In Farncombe, T, Iniewski, K, eds. Medical Imaging: Technology and Applications. Boca Raton, FL: CRC Press, 2014:335358.Google Scholar
Delbeke, D, Schoder, H, Martin, WH, Wahl, RL. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med 2009;39:308340.Google Scholar
Dohan, O, De la Vieja, A, Paroder, V, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 2003;24:4877.Google Scholar
Balon, HR, Silberstein, EB, Meier, DA, Charkes, ND, Sarkar, SD, Royal, HD, et al. Society of Nuclear Medicine Procedure Guideline for Thyroid Scintigraphy. Reston, VA: Society of Nuclear Medicine and Molecular Imaging, 2006 (http://snmmi.files.cms-plus.com/docs/Thyroid_Scintigraphy_V3.pdf, accessed 4 September 2015).Google Scholar
International Commission on Radiological Protection. ICRP publication 53: radiation dose to patients from radiopharmaceuticals. Ann ICRP 1988;18.Google Scholar
Silberstein, EB, Alavi, A, Balon, HR, Becker, DB, Charkes, ND, Clarke, SEM, et al. Society of Nuclear Medicine Scintigraphy for Differentiated Papillary and Follicular Thyroid Cancer. Reston, VA: Society of Nuclear Medicine and Molecular Imaging, 2006 (http://snmmi.files.cms-plus.com/docs/Scintigraphy%20for%20Differentiated%20Thyroid%20Cancer%20V3%200%20(9-25-06).pdf, accessed 4 September 2015).Google Scholar
Hegedus, L. Clinical practice. The thyroid nodule. N Engl J Med 2004;351:17641771.Google Scholar
American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.Google Scholar
Papini, E, Guglielmi, R, Bianchini, A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002;87:19411946.Google Scholar
Marqusee, E, Benson, CB, Frates, MC, et al. Usefulness of ultrasonography in the management of nodular thyroid disease. Ann Intern Med 2000;133:696700.Google Scholar
Ladenson, PW, Braverman, LE, Mazzaferri, EL, et al. Comparison of administration of recombinant human thyrotropin with withdrawal of thyroid hormone for radioactive iodine scanning in patients with thyroid carcinoma. N Engl J Med 1997;337:888896.Google Scholar
Haugen, BR, Pacini, F, Reiners, C, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab 1999;84:38773885.Google Scholar
Schroeder, PR, Haugen, BR, Pacini, F, et al. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J Clin Endocrinol Metab 2006;91:878884.Google Scholar
Van Nostrand, D, Moreau, S, Bandaru, VV, et al. (124)I positron emission tomography versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid 2010;20:879883.Google Scholar
de Pont, C, Halders, S, Bucerius, J, Mottaghy, F, Brans, B. (124)I PET/CT in the pretherapeutic staging of differentiated thyroid carcinoma: comparison with posttherapy (131)I SPECT/CT. Eur J Nucl Med Mol Imaging 2013;40:693700.Google Scholar
Van Nostrand, D, Khorjekar, GR, O'Neil, J, et al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in the identification of metastasis in differentiated thyroid cancer with 131I planar whole-body imaging and 124I PET. J Nucl Med 2012;53:359362.Google Scholar
Muratet, JP, Giraud, P, Daver, A, Minier, JF, Gamelin, E, Larra, F. Predicting the efficacy of first iodine-131 treatment in differentiated thyroid carcinoma. J Nucl Med 1997;38:13621368.Google Scholar
Leger, AF, Pellan, M, Dagousset, F, Chevalier, A, Keller, I, Clerc, J. A case of stunning of lung and bone metastases of papillary thyroid cancer after a therapeutic dose (3.7 GBq) of 131I and review of the literature: implications for sequential treatments. Br J Radiol 2005;78:428432.Google Scholar
Fatourechi, V, Hay, ID, Mullan, BP, et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid 2000;10:573577.Google Scholar
Sherman, SI, Tielens, ET, Sostre, S, Wharam, MD Jr., Ladenson, PW. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab 1994;78:629634.Google Scholar
Souza Rosario, PW, Barroso, AL, Rezende, LL, et al. Post I-131 therapy scanning in patients with thyroid carcinoma metastases: an unnecessary cost or a relevant contribution? Clin Nucl Med 2004;29:795798.Google Scholar
Xue, YL, Qiu, ZL, Song, HJ, Luo, QY. Value of (131)I SPECT/CT for the evaluation of differentiated thyroid cancer: a systematic review of the literature. Eur J Nucl Med Mol Imaging 2013;40:768778.Google Scholar
Spencer, CA. Challenges of serum thyroglobulin (Tg) measurement in the presence of Tg autoantibodies. J Clin Endocrinol Metab 2004;89:37023704.Google Scholar
Koh, JM, Kim, ES, Ryu, JS, Hong, SJ, Kim, WB, Shong, YK. Effects of therapeutic doses of 131I in thyroid papillary carcinoma patients with elevated thyroglobulin level and negative 131I whole-body scan: comparative study. Clin Endocrinol 2003;58:421427.Google Scholar
Mazzaferri, EL, Kloos, RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:14471463.Google Scholar
Schlumberger, M, Mancusi, F, Baudin, E, Pacini, F. 131I therapy for elevated thyroglobulin levels. Thyroid 1997;7:273276.Google Scholar
Martin, WH, Sandler, MP. Thyroid Imaging. In Sandler, MP, Coleman, RE, Patton, JA, Wackers, FJT, Gottschalk, A, eds. Diagnostic Nuclear Medicine, 4th edn. Philadelphia, PA: Lippincott Williams & WIlkins, 2003:264–271.Google Scholar
Sandrock, D, Merino, MJ, Norton, JA, Neumann, RD. Ultrastructural histology correlates with results of thallium-201/technetium-99m parathyroid subtraction scintigraphy. J Nucl Med 1993;34:2429.Google Scholar
Crane, P, Laliberte, R, Heminway, S, Thoolen, M, Orlandi, C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med 1993;20:2025.Google Scholar
Backus, M, Piwnica-Worms, D, Hockett, D, et al. Microprobe analysis of Tc-MIBI in heart cells: calculation of mitochondrial membrane potential. Am J Physiol 1993;265:C178187.Google Scholar
Coakley, AJ, Kettle, AG, Wells, CP, O'Doherty, MJ, Collins, RE. 99Tcm sestamibi: a new agent for parathyroid imaging. Nucl Med Commun 1989;10:791794.Google Scholar
Greenspan, BS, Dillehay, G, Intenzo, C, et al. SNM practice guideline for parathyroid scintigraphy 4.0. J Nucl Med Technol 2012;40:111118.Google Scholar
Kettle, AG, O'Doherty, MJ. Parathyroid imaging: how good is it and how should it be done? Semin Nucl Med 2006;36:206211.Google Scholar
Ruda, JM, Hollenbeak, CS, Stack, BC Jr. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003. Otolaryngol Head Neck Surg 2005;132:359372.Google Scholar
Hindie, E, Zanotti-Fregonara, P, Just, PA, et al. Parathyroid scintigraphy findings in chronic kidney disease patients with recurrent hyperparathyroidism. Eur J Nucl Med Mol Imaging 2010;37:623634.Google Scholar
Avram, AM, Fig, LM, Gross, MD. Adrenal gland scintigraphy. Semin Nucl Med 2006;36:212227.Google Scholar
Bombardieri, E, Giammarile, F, Aktolun, C, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010;37:24362446.Google Scholar
Taieb, D, Timmers, HJ, Hindie, E, et al. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2012;39:19771995.Google Scholar
Ambrosini, V, Campana, D, Tomassetti, P, Fanti, S. (68)Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 2012;39(suppl 1):S52S60.Google Scholar
Yakemchuk, VN, Jager, PL, Chirakal, R, Reid, R, Major, P, Gulenchyn, KY. PET/CT using (18)F-FDOPA provides improved staging of carcinoid tumor patients in a Canadian setting. Nucl Med Commun 2012;33:322330.Google Scholar
Boellaard, R, O'Doherty, MJ, Weber, WA, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37:181200.Google Scholar
International Commission on Radiological Protection. Addendum to ICRP publication 53: radiation dose to patients from radiopharmaceuticals. Ann ICRP 1998;28.Google Scholar
International Commission on Radiological Protection. Addendum 3 to ICRP publication 53: radiation dose to patients from radiopharmaceuticals. Ann ICRP 2008;38.Google Scholar
Decristoforo, C, Pickett, RD, Verbruggen, A. Feasibility and availability of (68)Ga-labelled peptides. Eur J Nucl Med Mol Imaging 2012;39(suppl 1):S31S40.Google Scholar
Edge, SB, Byrd, D.R., Comptom, C.C., Fritz, A.G., Greene, F.L, Trotti, A., et al. AJCC Cancer Staging Manual. New York: Springer, 2010.Google Scholar
Asa, SL, Ezzat, S. Endocrine organs. In Allison, MR, ed. The Cancer Handbook. London: Nature Publishing, 2002:599610.Google Scholar
Koopmans, KP, Neels, ON, Kema, IP, et al. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol 2009;71:199213.Google Scholar
Bombardieri, E, Ambrosini, V, Aktolun, C, et al. 111In-Pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010;37:14411448.Google Scholar
Pepe, G, Moncayo, R, Bombardieri, E, Chiti, A. Somatostatin receptor SPECT. Eur J Nucl Med Mol Imaging 2012;39(suppl 1):S41S51.Google Scholar
Krenning, EP, Kwekkeboom, DJ, Pauwels, S, Kvols, LK, Reubi, JC. Somatostatin receptor scintigraphy. In Freeman, LM, ed. Nuclear Medicine Annual. New York: Lippincott Williamns & Wilkins, 1995:150.Google Scholar
Chiti, A, Fanti, S, Savelli, G, et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur J Nucl Med 1998;25:13961403.Google Scholar
Gibril, F, Reynolds, JC, Doppman, JL, et al. Somatostatin receptor scintigraphy: its sensitivity compared with that of other imaging methods in detecting primary and metastatic gastrinomas. A prospective study. Ann Intern Med 1996;125:2634.Google Scholar
Krenning, EP, Kwekkeboom, DJ, Bakker, WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993;20:716731.Google Scholar
Geijer, H, Breimer, LH. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2013;40:17701780.Google Scholar
Treglia, G, Castaldi, P, Rindi, G, Giordano, A, Rufini, V. Diagnostic performance of gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroendocrine tumours: a meta-analysis. Endocrine 2012;42:8087.Google Scholar
Balogova, S, Talbot, JN, Nataf, V, et al. 18F-Fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging 2013;40:943966.Google Scholar
Haug, A, Auernhammer, CJ, Wangler, B, et al. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2009;36:765770.Google Scholar
Jacobson, AF, Deng, H, Lombard, J, Lessig, HJ, Black, RR. 123I-meta-Iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab 2010;95:25962606.Google Scholar
Treglia, G, Cocciolillo, F, de Waure, C, et al. Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis. Eur J Nucl Med Mol Imaging 2012;39:11441153.Google Scholar
Sharp, SE, Gelfand, MJ, Shulkin, BL. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med 2011;41:345353.Google Scholar
Treglia, G, Cocciolillo, F, Di Nardo, F, et al. Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 dihydroxyphenylalanine positron emission tomography: a meta-analysis. Acad Radiol 2012;19:12901299.Google Scholar
Fowler, JS, Wolf, AP. 2-Deoxy-2-[18F]fluoro-d-glucose for metabolic studies: current status. Int J Rad Appl Instrum A 1986;37:663668.Google Scholar
Weber, G. Enzymology of cancer cells (Part 2). N Engl J Med 1977;296:541551.Google Scholar
Som, P, Atkins, HL, Bandoypadhyay, D, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-d-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980;21:670675.Google Scholar
Abraham, T, Schoder, H. Thyroid cancer–indications and opportunities for positron emission tomography/computed tomography imaging. Semin Nucl Med 2011;41:121138.Google Scholar
Ma, C, Xie, J, Lou, Y, Gao, Y, Zuo, S, Wang, X. The role of TSH for 18F-FDG-PET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated thyroglobulin and negative scan: a meta-analysis. Eur J Endocrinol 2010;163:177183.Google Scholar
Palmedo, H, Bucerius, J, Joe, A, et al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 2006;47:616624.Google Scholar
Pryma, DA, Schoder, H, Gonen, M, Robbins, RJ, Larson, SM, Yeung, HW. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hürthle cell thyroid cancer patients. J Nucl Med 2006;47:12601266.Google Scholar
Poisson, T, Deandreis, D, Leboulleux, S, et al. 18F-Fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer. Eur J Nucl Med Mol Imaging 2010;37:22772285.Google Scholar
Smallridge, RC, Ain, KB, Asa, SL, et al. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012;22:11041139.Google Scholar
American Thyroid Association Guidelines Task Force, Kloos, RT, Eng, C, Evans, DB, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009;19:565612.Google Scholar
Boland, GW, Dwamena, BA, Jagtiani Sangwaiya, M, et al. Characterization of adrenal masses by using FDG PET: a systematic review and meta-analysis of diagnostic test performance. Radiology 2011;259:117126.Google Scholar
Ansquer, C, Scigliano, S, Mirallie, E, et al. 18F-FDG PET/CT in the characterization and surgical decision concerning adrenal masses: a prospective multicentre evaluation. Eur J Nucl Med Mol Imaging 2010;37:16691678.Google Scholar
Deandreis, D, Leboulleux, S, Caramella, C, Schlumberger, M, Baudin, E. FDG PET in the management of patients with adrenal masses and adrenocortical carcinoma. Horm Cancer 2011;2:354362.Google Scholar
Kayani, I, Bomanji, JB, Groves, A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga--DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer 2008;112:24472455.Google Scholar
Kayani, I, Conry, BG, Groves, AM, et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. J Nucl Med 2009;50:19271932.Google Scholar
Binderup, T, Knigge, U, Loft, A, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med 2010;51:704712.Google Scholar
Garin, E, Le Jeune, F, Devillers, A, et al. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med 2009;50:858864.Google Scholar

References

Perrier, ND, Ituarte, P, Kikuchi, S, Siperstein, AE, Duh, QY, Clark, OH, et al. Intraoperative parathyroid aspiration and parathyroid hormone assay as an alternative to frozen section for tissue identification. World J Surg 2000;24:13191322.Google Scholar
Stephen, AE, Chen, KT, Milas, M, Siperstein, AE. The coming of age of radiation-induced hyperparathyroidism: evolving patterns of thyroid and parathyroid disease after head and neck irradiation. Surgery 2004;136:11431153.Google Scholar
Abdelghani, R, Noureldine, S, Abbas, A, Moroz, K, Kandil, E. The diagnostic value of parathyroid hormone washout after fine-needle aspiration of suspicious cervical lesions in patients with hyperparathyroidism. Laryngoscope 2013;123:13101313.Google Scholar
Bancos, I, Grant, CS, Nadeem, S, Stan, MN, Reading, CC, Sebo, TJ, et al. Risks and benefits of parathyroid fine-needle aspiration with parathyroid hormone washout. Endocr Pract 2012;18:441449.Google Scholar
Norman, J, Politz, D, Browarsky, I. Diagnostic aspiration of parathyroid adenomas causes severe fibrosis complicating surgery and final histological diagnosis. Thyroid 2007;17:12511255.Google Scholar
Alwaheeb, S, Rambaldini, G, Boerner, S, Coire, C, Fiser, J, Asa, SL. Worrisome histologic alterations following fine-needle aspiration of the parathyroid. J Clin Pathol 2006;59:10941096.Google Scholar
Wei, CH, Harari, A. Parathyroid carcinoma: update and guidelines for management. Curr Treat Options Oncol 2012;13:1123.Google Scholar
Maxwell, JH, Giroux, L, Bunner, J, Duvvuri, U. Fine-needle thyroid aspiration-induced hemorrhage of an unsuspected parathyroid adenoma misdiagnosed as a thyroid nodule: remission and relapse of hyperparathyroidism. Thyroid 2011;21:805808.Google Scholar
Bishop, JA, Owens, CL, Shum, CH, Ali, SZ. Thyroid bed fine-needle aspiration: experience at a large tertiary care center. Am J Clin Pathol 2010;134:335339.Google Scholar
Layfield, LJ. Fine needle aspiration cytology of cystic parathyroid lesions. A cytomorphologic overlap with cystic lesions of the thyroid. Acta Cytol 1991;35:447450.Google Scholar
Kwak, JY, Kim, EK, Moon, HJ, Kim, MJ, Ahn, SS, Son, EJ, et al. Parathyroid incidentalomas detected on routine ultrasound-directed fine-needle aspiration biopsy in patients referred for thyroid nodules and the role of parathyroid hormone analysis in the samples. Thyroid 2009;19:743748.Google Scholar
Tseleni-Balafouta, S, Gakiopoulou, H, Kavantzas, N, Agrogiannis, G, Givalos, N, Patsouris, E. Parathyroid proliferations: a source of diagnostic pitfalls in FNA of thyroid. Cancer 2007;111:130136.Google Scholar
Absher, KJ, Truong, LD, Khurana, KK, Ramzy, I. Parathyroid cytology: avoiding diagnostic pitfalls. Head Neck 2002;24:157164.Google Scholar
Lieu, D. Cytopathologist-performed ultrasound-guided fine-needle aspiration of parathyroid lesions. Diagn Cytopathol 2010;38:327332.Google Scholar
Paker, I, Yilmazer, D, Yandakci, K, Arikok, AT, Alper, M. Intrathyroidal oncocytic parathyroid adenoma: a diagnostic pitfall on fine-needle aspiration. Diagn Cytopathol 2010;38:833836.Google Scholar
Papanicolau-Sengos, A, Brumund, K, Lin, G, Hasteh, F. Cytologic findings of a clear cell parathyroid lesion. Diagn Cytopathol 2013;41:725728.Google Scholar
Giorgadze, T, Stratton, B, Baloch, ZW, Livolsi, VA. Oncocytic parathyroid adenoma: problem in cytological diagnosis. Diagn Cytopathol 2004;31:276280.Google Scholar
Auger, M, Charbonneau, M, Huttner, I. Unsuspected intrathyroidal parathyroid adenoma: mimic of lymphocytic thyroiditis in fine-needle aspiration specimens-a case report. Diagn Cytopathol 1999;21:276279.Google Scholar
Oliveira, AM, Tazelaar, HD, Myers, JL, Erickson, LA, Lloyd, RV. Thyroid transcription factor-1 distinguishes metastatic pulmonary from well-differentiated neuroendocrine tumors of other sites. Am J Surg Pathol 2001;25:815819.Google Scholar
Sidawy, MK, Costa, M. The significance of paravacuolar granules of the thyroid. A histologic, cytologic and ultrastructural study. Acta Cytol 1989;33:929933.Google Scholar
Kocjan, G, Cochand-Priollet, B, de Agustin, PP, Bourgain, C, Chandra, A, Daneshbod, Y, et al. Diagnostic terminology for reporting thyroid fine needle aspiration cytology: European Federation of Cytology Societies thyroid working party symposium, Lisbon 2009. Cytopathology 2010;21:8692.Google Scholar
Lobo, C, McQueen, A, Beale, T, Kocjan, G. The UK Royal College of Pathologists thyroid fine-needle aspiration diagnostic classification is a robust tool for the clinical management of abnormal thyroid nodules. Acta Cytol 2011;55:499506.Google Scholar
Cibas, ES, Ali, SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid 2009;19:11591165.Google Scholar
American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, Kloos, RT, Lee, SL, Mandel, SJ, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.Google Scholar
Cibas, ES, Ali, SZ. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol 2009;132:658665.Google Scholar
Goellner, JR, Gharib, H, Grant, CS, Johnson, DA. Fine needle aspiration cytology of the thyroid, 1980 to 1986. Acta Cytol 1987;31:587–590.Google Scholar
Grant, CS, Hay, ID, Gough, IR, McCarthy, PM, Goellner, JR. Long-term follow-up of patients with benign thyroid fine-needle aspiration cytologic diagnoses. Surgery 1989;106:980985.Google Scholar
Ohori, NP, Wolfe, J, Hodak, SP, Lebeau, SO, Yip, L, Carty, SE, et al.Colloid-rich” follicular neoplasm/suspicious for follicular neoplasm thyroid fine-needle aspiration specimens: cytologic, histologic, and molecular basis for considering an alternate view. Cancer Cytopathol 2013;121:718728.Google Scholar
Yang, GC, Schreiner, AM, Sun, W. Can abundant colloid exclude oncocytic (Hürthle cell) carcinoma in thyroid fine needle aspiration? Cytohistological correlation of 127 oncocytic (Hürthle cell) lesions. Cytopathology 2013;24:185193.Google Scholar
Zeppa, P, Cozzolino, I, Peluso, AL, Troncone, G, Lucariello, A, Picardi, M, et al. Cytologic, flow cytometry, and molecular assessment of lymphoid infiltrate in fine-needle cytology samples of Hashimoto thyroiditis. Cancer 2009;117:174184.Google Scholar
Yang, YJ, Khurana, KK. Diagnostic utility of intracytoplasmic lumen and transgressing vessels in evaluation of Hürthle cell lesions by fine-needle aspiration. Arch Pathol Lab Med 2001;125:10311035.Google Scholar
Elliott, DD, Pitman, MB, Bloom, L, Faquin, WC. Fine-needle aspiration biopsy of Hürthle cell lesions of the thyroid gland: a cytomorphologic study of 139 cases with statistical analysis. Cancer 2006;108:102109.Google Scholar
Lubitz, CC, Faquin, WC, Yang, J, Mekel, M, Gaz, RD, Parangi, S, et al. Clinical and cytological features predictive of malignancy in thyroid follicular neoplasms. Thyroid 2010;20:2531.Google Scholar
Renshaw, AA, Wang, E, Wilbur, D, Hughes, JH, Haja, J, Henry, MR. Interobserver agreement on microfollicles in thyroid fine-needle aspirates. Arch Pathol Lab Med 2006;130:148152.Google Scholar
Khayyata, S, Barroeta, JE, LiVolsi, VA, Baloch, ZW. Papillary hyperplastic nodule: pitfall in the cytopathologic diagnosis of papillary thyroid carcinoma. Endocr Pract 2008;14:863868.Google Scholar
Yang, GC, Liebeskind, D, Messina, AV. Ultrasound-guided fine-needle aspiration of the thyroid assessed by Ultrafast Papanicolaou stain: data from 1135 biopsies with a two- to six-year follow-up. Thyroid 2001;11:581589.Google Scholar
Yang, GC, Liebeskind, D, Messina, AV. Diagnostic accuracy of follicular variant of papillary thyroid carcinoma in fine-needle aspirates processed by ultrafast Papanicolaou stain: histologic follow-up of 125 cases. Cancer 2006;108:174179.Google Scholar
Niu, D, Murata, S, Kondo, T, Nakazawa, T, Kawasaki, T, Ma, D, et al. Involvement of centrosomes in nuclear irregularity of thyroid carcinoma cells. Virchows Arch 2009;455:149157.Google Scholar
Papotti, M, Manazza, AD, Chiarle, R, Bussolati, G. Confocal microscope analysis and tridimensional reconstruction of papillary thyroid carcinoma nuclei. Virchows Arch 2004;444:350355.Google Scholar
Das, DK. Intranuclear cytoplasmic inclusions in fine-needle aspiration smears of papillary thyroid carcinoma: a study of its morphological forms, association with nuclear grooves, and mode of formation. Diagn Cytopathol 2005;32:264268.Google Scholar
Yang, YJ, Demirci, SS. Evaluating the diagnostic significance of nuclear grooves in thyroid fine needle aspirates with a semiquantitative approach. Acta Cytol 2003;47:563570.Google Scholar
Alkuwari, E, Khetani, K, Dendukuri, N, Wang, L, Auger, M. Quantitative assessment of nuclear grooves in fine needle aspirates of the thyroid: a retrospective cytohistologic study of 94 cases. Anal Quant Cytol Histol 2009;31:161169.Google Scholar
Harvey, AM, Truong, LD, Mody, DR. Diagnostic pitfalls of Hashimoto’s/lymphocytic thyroiditis on fine-needle aspirations and strategies to avoid overdiagnosis. Acta Cytol 2012;56:352360.Google Scholar
Das, DK, Mallik, MK, Sharma, P, Sheikh, ZA, Mathew, PA, Sheikh, M, et al. Papillary thyroid carcinoma and its variants in fine needle aspiration smears. A cytomorphologic study with special reference to tall cell variant. Acta Cytol 2004;48:325336.Google Scholar
Urano, M, Kiriyama, Y, Takakuwa, Y, Kuroda, M. Tall cell variant of papillary thyroid carcinoma: its characteristic features demonstrated by fine-needle aspiration cytology and immunohistochemical study. Diagn Cytopathol 2009;37:732737.Google Scholar
Guan, H, Vandenbussche, CJ, Erozan, YS, Rosenthal, DL, Tatsas, AD, Olson, MT, et al. Can the tall cell variant of papillary thyroid carcinoma be distinguished from the conventional type in fine needle aspirates? A cytomorphologic study with assessment of diagnostic accuracy. Acta Cytol 2013;57:534542.Google Scholar
Lee, SH, Jung, CK, Bae, JS, Jung, SL, Choi, YJ, Kang, CS. Liquid-based cytology improves preoperative diagnostic accuracy of the tall cell variant of papillary thyroid carcinoma. Diagn Cytopathol 2014;42:1117.Google Scholar
Kuma, S, Hirokawa, M, Miyauchi, A, Kakudo, K, Katayama, S. Cytologic features of hyalinizing trabecular adenoma of the thyroid. Acta Cytol 2003;47:399404.Google Scholar
Casey, MB, Sebo, TJ, Carney, JA. Hyalinizing trabecular adenoma of the thyroid gland: cytologic features in 29 cases. Am J Surg Pathol 2004;28:859867.Google Scholar
Bishop, JA, Ali, SZ. Hyalinizing trabecular adenoma of the thyroid gland. Diagn Cytopathol 2011;39:306310.Google Scholar
Kim, T, Oh, YL, Kim, KM, Shin, JH. Diagnostic dilemmas of hyalinizing trabecular tumours on fine needle aspiration cytology: a study of seven cases with BRAF mutation analysis. Cytopathology 2011;22:407413.Google Scholar
Das, DK, Mallik, MK, Haji, BE, Ahmed, MS, Al-Shama’a, M, Al-Ayadhy, B, et al. Psammoma body and its precursors in papillary thyroid carcinoma: a study by fine-needle aspiration cytology. Diagn Cytopathol 2004;31:380386.Google Scholar
Ellison, E, Lapuerta, P, Martin, SE. Psammoma bodies in fine-needle aspirates of the thyroid: predictive value for papillary carcinoma. Cancer 1998;84:169175.Google Scholar
Maruta, J, Hashimoto, H, Suehisa, Y, Yamashita, H, Noguchi, S, Aratake, Y, et al. Improving the diagnostic accuracy of thyroid follicular neoplasms: cytological features in fine-needle aspiration cytology. Diagn Cytopathol 2011;39:2834.Google Scholar
Pusztaszeri, MP, Bongiovanni, M, Faquin, WC. Update on the cytologic and molecular features of medullary thyroid carcinoma. Adv Anat Pathol 2014;21:2635.Google Scholar
Kaushal, S, Iyer, VK, Mathur, SR, Ray, R. Fine needle aspiration cytology of medullary carcinoma of the thyroid with a focus on rare variants: a review of 78 cases. Cytopathology 2011;22:95105.Google Scholar
Bongiovanni, M, Sadow, PM, Faquin, WC. Poorly-differentiated thyroid carcinoma: a cytologic–histologic review. Adv Anat Pathol 2009;16:283289.Google Scholar
Barwad, A, Dey, P, Nahar Saikia, U, Gupta, N, Rajwanshi, A, Nijhawan, R, et al. Fine needle aspiration cytology of insular carcinoma of thyroid. Diagn Cytopathol 2012;40(suppl 1):E43E47.Google Scholar
Bongiovanni, M, Bloom, L, Krane, JF, Baloch, ZW, Powers, CN, Hintermann, S, et al. Cytomorphologic features of poorly-differentiated thyroid carcinoma: a multi-institutional analysis of 40 cases. Cancer 2009;117:185194.Google Scholar
Morgen, EK, Geddie, W, Boerner, S, Bailey, D, Santos Gda, C. The role of fine-needle aspiration in the diagnosis of thyroid lymphoma: a retrospective study of nine cases and review of published series. J Clin Pathol 2010;63:129133.Google Scholar
Walsh, S, Lowery, AJ, Evoy, D, McDermott, EW, Prichard, RS. Thyroid lymphoma: recent advances in diagnosis and optimal management strategies. Oncologist 2013;18:9941003.Google Scholar
Nobuoka, Y, Hirokawa, M, Kuma, S, Takagi, N, Higuchi, M, Masuoka, H, et al. Cytologic findings and differential diagnoses of primary thyroid MALT lymphoma with striking plasma cell differentiation and amyloid deposition. Diagn Cytopathol 2014;42:7377.Google Scholar
Kaba, S, Hirokawa, M, Kuma, S, Maekawa, M, Yanase, Y, Kojima, M, et al. Cytologic findings of primary thyroid MALT lymphoma with extreme plasma cell differentiation: FNA cytology of two cases. Diagn Cytopathol 2009;37:815819.Google Scholar
Hegerova, L, Griebeler, ML, Reynolds, JP, Henry, MR, Gharib, H. Metastasis to the thyroid gland: report of a large series from the Mayo Clinic. Am J Clin Oncol 2015;38:338342.Google Scholar
Chung, AY, Tran, TB, Brumund, KT, Weisman, RA, Bouvet, M. Metastases to the thyroid: a review of the literature from the last decade. Thyroid 2012;22:258268.Google Scholar
Travis, WD. Advances in neuroendocrine lung tumors. Ann Oncol 2010;21(suppl` 1):vii65vii71.Google Scholar
Srivastava, A, Hornick, JL. Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol 2009;33:626632.Google Scholar
Chan, ES, Alexander, J, Swanson, PE, Jain, D, Yeh, MM. PDX-1, CDX-2, TTF-1, and CK7: a reliable immunohistochemical panel for pancreatic neuroendocrine neoplasms. Am J Surg Pathol 2012;36:737743.Google Scholar
Walts, AE, Ines, D, Marchevsky, AM. Limited role of Ki-67 proliferative index in predicting overall short-term survival in patients with typical and atypical pulmonary carcinoid tumors. Mod Pathol 2012;25:12581264.Google Scholar
Zahel, T, Krysa, S, Herpel, E, Stenzinger, A, Goeppert, B, Schirmacher, P, et al. Phenotyping of pulmonary carcinoids and a Ki-67-based grading approach. Virchows Arch 2012;460:299308.Google Scholar
Grimaldi, F, Muser, D, Beltrami, CA, Machin, P, Morelli, A, Pizzolitto, S, et al. Partitioning of bronchopulmonary carcinoids in two different prognostic categories by Ki-67 score. Front Endocrinol (Lausanne) 2011;2:20.Google Scholar
Wittchow, R, Laszewski, M, Walker, W, Dick, F. Paranuclear blue inclusions in metastatic undifferentiated small cell carcinoma in the bone marrow. Mod Pathol 1992;5:555558.Google Scholar
Walker, WP, Wittchow, RJ, Bottles, K, Layfield, LJ, Hirschowitz, S, Cohen, MB. Paranuclear blue inclusions in small cell undifferentiated carcinoma: a diagnostically useful finding demonstrated in fine-needle aspiration biopsy smears. Diagn Cytopathol 1994;10:212215.Google Scholar
Mullins, RK, Thompson, SK, Coogan, PS, Shurbaji, MS. Paranuclear blue inclusions: an aid in the cytopathologic diagnosis of primary and metastatic pulmonary small-cell carcinoma. Diagn Cytopathol 1994;10:332335.Google Scholar
Ishida, M, Sekine, S, Fukagawa, T, Ohashi, M, Morita, S, Taniguchi, H, et al. Neuroendocrine carcinoma of the stomach: morphologic and immunohistochemical characteristics and prognosis. Am J Surg Pathol 2013;37:949959.Google Scholar
Yao, JL, Madeb, R, Bourne, P, Lei, J, Yang, X, Tickoo, S, et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006;30:705712.Google Scholar
Ordóñez, NG. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol 2000;24:12171223.Google Scholar
Crapanzano, JP, Loukeris, K, Borczuk, AC, Saqi, A. Cytological, histological, and immunohistochemical findings of pulmonary carcinomas with basaloid features. Diagn Cytopathol 2011;39:92100.Google Scholar
Travis, WD. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod Pathol 2012;25(suppl 1):S18S30.Google Scholar
Travis, WD, Linnoila, RI, Tsokos, MG, Hitchcock, CL, Cutler, GB Jr., Nieman, L, et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol 1991;15:529553.Google Scholar
Jimenez-Heffernan, JA, Lopez-Ferrer, P, Vicandi, B, Marino, A, Tejerina, E, Nistal, M, et al. Fine-needle aspiration cytology of large cell neuroendocrine carcinoma of the lung: a cytohistologic correlation study of 11 cases. Cancer 2008;114:180186.Google Scholar
Wiatrowska, BA, Krol, J, Zakowski, MF. Large-cell neuroendocrine carcinoma of the lung: proposed criteria for cytologic diagnosis. Diagn Cytopathol 2001;24:5864.Google Scholar
Hoshi, R, Furuta, N, Horai, T, Ishikawa, Y, Miyata, S, Satoh, Y. Discriminant model for cytologic distinction of large cell neuroendocrine carcinoma from small cell carcinoma of the lung. J Thorac Oncol 2010;5:472478.Google Scholar
Lack, EE, Cubilla, AL, Woodruff, JM, Farr, HW. Paragangliomas of the head and neck region: a clinical study of 69 patients. Cancer 1977;39:397409.Google Scholar
Peterson, EW, Meeker, LH. Tumors of the carotid body. Ann Surg 1936;103:554571.Google Scholar
Das, DK, Gupta, AK, Chowdhury, V, Satsangi, DK, Tyagi, S, Mohan, JC, et al. Fine-needle aspiration diagnosis of carotid body tumor: report of a case and review of experience with cytologic features in four cases. Diagn Cytopathol 1997;17:143147.Google Scholar
Meyer, FB, Sundt, TM Jr., Pearson, BW. Carotid body tumors: a subject review and suggested surgical approach. J Neurosurg 1986;64:377385.Google Scholar
Davidge-Pitts, KJ, Pantanowitz, D. Carotid body tumors. Surg Annu 1984;16:203227.Google Scholar
Farr, HW. Carotid body tumors: a 40-year study. CA Cancer J Clin 1980;30:260265.Google Scholar
Fleming, MV, Oertel, YC, Rodriguez, ER, Fidler, WJ. Fine-needle aspiration of six carotid body paragangliomas. Diagn Cytopathol 1993;9:510515.Google Scholar
Jimenez-Heffernan, JA, Vicandi, B, Lopez-Ferrer, P, Gonzalez-Peramato, P, Perez-Campos, A, Viguer, JM. Cytologic features of pheochromocytoma and retroperitoneal paraganglioma: a morphologic and immunohistochemical study of 13 cases. Acta Cytol 2006;50:372378.Google Scholar
Singhi, AD, Hruban, RH, Fabre, M, Imura, J, Schulick, R, Wolfgang, C, et al. Peripancreatic paraganglioma: a potential diagnostic challenge in cytopathology and surgical pathology. Am J Surg Pathol 2011;35:14981504.Google Scholar
Zajicek, J. Aspiration Biopsy Cytology Part I: Cytology of Supradiaphragmatic Organs, Ch. 6 Carotid body tumors.Basel:Krager, 1974:131–135.Google Scholar
Dundas, KE, Wong, MP, Suen, KC. Two unusual benign lesions of the neck masquerading as malignancy on fine-needle aspiration cytology. Diagn Cytopathol 1995;12:272278.Google Scholar
Vera-Alvarez, J, Marigil-Gomez, M, Abascal-Agorreta, M, Vazquez-Garcia, J. Malignant retroperitoneal paraganglioma with intranuclear vacuoles in a fine needle aspirate. A case report. Acta Cytol 1993;37:229233.Google Scholar
Jacobs, DM, Waisman, J. Cervical paraganglioma with intranuclear vacuoles in a fine needle aspirate. Acta Cytol 1987;31:2932.Google Scholar
Engzell, U, Franzen, S, Zajicek, J. Aspiration biopsy of tumors of the neck. II. Cytologic findings in 13 cases of carotid body tumor. Acta Cytol 1971;15:2530.Google Scholar
Hood, IC, Qizilbash, AH, Young, JE, Archibald, SD. Fine needle aspiration biopsy cytology of paragangliomas. Cytologic, light microscopic and ultrastructural studies of three cases. Acta Cytol 1983;27:651657.Google Scholar
Zaharopoulos, P. Diagnostic challenges in the fine-needle aspiration diagnosis of carotid body paragangliomas: report of two cases. Diagn Cytopathol 2000;23:202207.Google Scholar
Kapila, K, Tewari, MC, Verma, K. Paragangliomas: a diagnostic dilemma on fine needle aspirates. Indian J Cancer 1993;30:152157.Google Scholar
Naniwadekar, MR, Jagtap, SV, Kshirsagar, AY, Shinagare, SA, Tata, HR, Sahoo, K. Fine needle aspiration diagnosis of carotid body tumor in a case of multiple paragangliomas presenting with facial palsy: a case report. Acta Cytol 2010;54:635639.Google Scholar
Armstrong, MJ, Chiosea, SI, Carty, SE, Hodak, SP, Yip, L. Thyroid paragangliomas are locally aggressive. Thyroid 2012;22:8893.Google Scholar
Handa, U, Bal, A, Mohan, H, Dass, A. Parapharyngeal paraganglioma: diagnosis on fine-needle aspiration. Am J Otolaryngol 2005;26:360361.Google Scholar
Galan, SR, Kann, PH. Genetics and molecular pathogenesis of pheochromocytoma and paraganglioma. Clin Endocrinol (Oxf) 2013;78:165175.Google Scholar
Barletta, JA, Hornick, JL. Succinate dehydrogenase-deficient tumors: diagnostic advances and clinical implications. Adv Anat Pathol 2012;19:193203.Google Scholar
Uemura, S, Yasuda, I, Kato, T, Doi, S, Kawaguchi, J, Yamauchi, T, et al. Preoperative routine evaluation of bilateral adrenal glands by endoscopic ultrasound and fine-needle aspiration in patients with potentially resectable lung cancer. Endoscopy 2013;45:195201.Google Scholar
Stelow, EB, Debol, SM, Stanley, MW, Mallery, S, Lai, R, Bardales, RH. Sampling of the adrenal glands by endoscopic ultrasound-guided fine-needle aspiration. Diagn Cytopathol 2005;33:2630.Google Scholar
Eloubeidi, MA, Black, KR, Tamhane, A, Eltoum, IA, Bryant, A, Cerfolio, RJ. A large single-center experience of EUS-guided FNA of the left and right adrenal glands: diagnostic utility and impact on patient management. Gastrointest Endosc 2010;71:745753.Google Scholar
Azhar, JK, Jacqueline, HS, Tony, LK, Tan, BH, Steven, JM. Bilateral adrenal histoplasmosis: endoscopic ultrasound-guided fine needle aspiration as a method of diagnosis and assessment. Med J Malaysia 2011;66:504506.Google Scholar
Powers, CN, Rupp, GM, Maygarden, SJ, Frable, WJ. Fine-needle aspiration cytology of adrenal cryptococcosis: a case report. Diagn Cytopathol 1991;7:8891.Google Scholar
Rimondi, AP, Bianchini, E, Barucchello, G, Panzavolta, R. Addison’s disease caused by adrenal blastomycosis: a case report with fine needle aspiration (FNA) cytology. Cytopathology 1995;6:277279.Google Scholar
Yee, AC, Gopinath, N, Ho, CS, Tao, LC. Fine-needle aspiration biopsy of adrenal tuberculosis. Can Assoc Radiol J 1986;37:287289.Google Scholar
Rana, C, Krishnani, N, Kumari, N. Spectrum of adrenal lesions on fine needle aspiration cytology. Indian J Pathol Microbiol 2012;55:461466.Google Scholar
Hasan, M, Siddiqui, F, Al-Ajmi, M. FNA diagnosis of adrenal myelolipoma: a rare entity. Diagn Cytopathol 2008;36:925926.Google Scholar
Settakorn, J, Sirivanichai, C, Rangdaeng, S, Chaiwun, B. Fine-needle aspiration cytology of adrenal myelolipoma: case report and review of the literature. Diagn Cytopathol 1999;21:409412.Google Scholar
Saboorian, MH, Katz, RL, Charnsangavej, C. Fine needle aspiration cytology of primary and metastatic lesions of the adrenal gland. A series of 188 biopsies with radiologic correlation. Acta Cytol 1995;39:843851.Google Scholar
Min, KW, Song, J, Boesenberg, M, Acebey, J. Adrenal cortical nodule mimicking small round cell malignancy on fine needle aspiration. Acta Cytol 1988;32:543546.Google Scholar
Suen, KC, McNeely, TB. Adrenal cortical cells mimicking small cell anaplastic carcinoma in a fine-needle aspirate. Mod Pathol 1991;4:594595.Google Scholar
Wu, HH, Cramer, HM, Kho, J, Elsheikh, TM. Fine needle aspiration cytology of benign adrenal cortical nodules. A comparison of cytologic findings with those of primary and metastatic adrenal malignancies. Acta Cytol 1998;42:13521358.Google Scholar
Shigematsu, K, Nishida, N, Sakai, H, Igawa, T, Toriyama, K, Nakatani, A, et al. Synaptophysin immunoreactivity in adrenocortical adenomas: a correlation between synaptophysin and CYP17A1 expression. Eur J Endocrinol 2009;161:939945.Google Scholar
Sangoi, AR, McKenney, JK. A tissue microarray-based comparative analysis of novel and traditional immunohistochemical markers in the distinction between adrenal cortical lesions and pheochromocytoma. Am J Surg Pathol 2010;34:423432.Google Scholar
Weissferdt, A, Phan, A, Suster, S, Moran, CA. Adrenocortical carcinoma: a comprehensive immunohistochemical study of 40 cases. Appl Immunohistochem Mol Morphol 2014;22:2430.Google Scholar
Katz, RL, Patel, S, Mackay, B, Zornoza, J. Fine needle aspiration cytology of the adrenal gland. Acta Cytol 1984;28:269282.Google Scholar
Ren, R, Guo, M, Sneige, N, Moran, CA, Gong, Y. Fine-needle aspiration of adrenal cortical carcinoma: cytologic spectrum and diagnostic challenges. Am J Clin Pathol 2006;126:389398.Google Scholar
Lumachi, F, Borsato, S, Brandes, AA, Boccagni, P, Tregnaghi, A, Angelini, F, et al. Fine-needle aspiration cytology of adrenal masses in noncancer patients: clinicoradiologic and histologic correlations in functioning and nonfunctioning tumors. Cancer 2001;93:323329.Google Scholar
Lloyd, RV. Adrenal cortical tumors, pheochromocytomas and paragangliomas. Mod Pathol 2011;24(suppl 2):S58S65.Google Scholar
Sharma, S, Singh, R, Verma, K. Cytomorphology of adrenocortical carcinoma and comparison with renal cell carcinoma. Acta Cytol 1997;41:385392.Google Scholar
Shin, SJ, Hoda, RS, Ying, L, DeLellis, RA. Diagnostic utility of the monoclonal antibody A103 in fine-needle aspiration biopsies of the adrenal. Am J Clin Pathol 2000;113:295302.Google Scholar
Fetsch, PA, Powers, CN, Zakowski, MF, Abati, A. Anti-alpha-inhibin: marker of choice for the consistent distinction between adrenocortical carcinoma and renal cell carcinoma in fine-needle aspiration. Cancer 1999;87:168172.Google Scholar
Bosman, FT, Carneiro, F, Hruban, RH, Theise, ND. WHO Classification of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010.Google Scholar
Chang, F, Chandra, A, Culora, G, Mahadeva, U, Meenan, J, Herbert, A. Cytologic diagnosis of pancreatic endocrine tumors by endoscopic ultrasound-guided fine-needle aspiration: a review. Diagn Cytopathol 2006;34:649658.Google Scholar
Gu, M, Ghafari, S, Lin, F, Ramzy, I. Cytological diagnosis of endocrine tumors of the pancreas by endoscopic ultrasound-guided fine-needle aspiration biopsy. Diagn Cytopathol 2005;32:204210.Google Scholar
Samad, A, Kaplan, A, Arain, M, Attam, R, Jessurun, J, Manivel, JC, et al. Endoscopic ultrasound-guided fine-needle aspiration diagnosis of large cell neuroendocrine carcinoma of the gallbladder and common bile duct: report of a case. Diagn Cytopathol 2013;41:10911095.Google Scholar
Nguyen, GK, Rayani, NA. Hyperplastic and neoplastic endocrine cells of the pancreas in aspiration biopsy. Diagn Cytopathol 1986;2:204211.Google Scholar
Nguyen, GK. Cytology of hyperplastic endocrine cells of the pancreas in fine needle aspiration biopsy. Acta Cytol 1984;28:499502.Google Scholar
Gala, I, Atkinson, BF, Nicosia, RF, Hermann, GA. Fine-needle aspiration cytology of idiopathic pancreatic islet cell adenosis. Diagn Cytopathol 1993;9:453456.Google Scholar
Sigel, CS, Klimstra, DS. Cytomorphologic and immunophenotypical features of acinar cell neoplasms of the pancreas. Cancer Cytopathol 2013;121:459470.Google Scholar
Stelow, EB, Bardales, RH, Shami, VM, Woon, C, Presley, A, Mallery, S, et al. Cytology of pancreatic acinar cell carcinoma. Diagn Cytopathol 2006;34:367372.Google Scholar
Labate, AM, Klimstra, DL, Zakowski, MF. Comparative cytologic features of pancreatic acinar cell carcinoma and islet cell tumor. Diagn Cytopathol 1997;16:112116.Google Scholar
Hosoda, W, Sasaki, E, Murakami, Y, Yamao, K, Shimizu, Y, Yatabe, Y. BCL10 as a useful marker for pancreatic acinar cell carcinoma, especially using endoscopic ultrasound cytology specimens. Pathol Int 2013;63:176182.Google Scholar
Hosoda, W, Takagi, T, Mizuno, N, Shimizu, Y, Sano, T, Yamao, K, et al. Diagnostic approach to pancreatic tumors with the specimens of endoscopic ultrasound-guided fine needle aspiration. Pathol Int 2010;60:358364.Google Scholar
Yantiss, RK, Chang, HK, Farraye, FA, Compton, CC, Odze, RD. Prevalence and prognostic significance of acinar cell differentiation in pancreatic endocrine tumors. Am J Surg Pathol 2002;26:893901.Google Scholar
Zhao, P, deBrito, P, Ozdemirli, M, Sidawy, MK. Solid-pseudopapillary neoplasm of the pancreas: awareness of unusual clinical presentations and morphology of the clear cell variant can prevent diagnostic errors. Diagn Cytopathol 2013;41:889895.Google Scholar
Song, JS, Yoo, CW, Kwon, Y, Hong, EK. Endoscopic ultrasound-guided fine needle aspiration cytology diagnosis of solid pseudopapillary neoplasm: three case reports with review of literature. Korean J Pathol 2012;46:399406.Google Scholar
Jhala, N, Siegal, GP, Jhala, D. Large, clear cytoplasmic vacuolation: an under-recognized cytologic clue to distinguish solid pseudopapillary neoplasms of the pancreas from pancreatic endocrine neoplasms on fine-needle aspiration. Cancer 2008;114:249254.Google Scholar
Bal, MM, Deodhar, K, Shrikhande, S, Shukla, P, Arya, S, Ramadwar, M. Solid pseudopapillary tumor of the pancreas: “experiences” and “lessons” at a tertiary-care oncology center. Diagn Cytopathol 2013;41:599606.Google Scholar
Samad, A, Shah, AA, Stelow, EB, Alsharif, M, Cameron, SE, Pambuccian, SE. Cercariform cells: another cytologic feature distinguishing solid pseudopapillary neoplasms from pancreatic endocrine neoplasms and acinar cell carcinomas in endoscopic ultrasound-guided fine-needle aspirates. Cancer Cytopathol 2013;121:298310.Google Scholar
Larghi, A, Capurso, G, Carnuccio, A, Ricci, R, Alfieri, S, Galasso, D, et al. Ki-67 grading of nonfunctioning pancreatic neuroendocrine tumors on histologic samples obtained by EUS-guided fine-needle tissue acquisition: a prospective study. Gastrointest Endosc 2012;76:570577.Google Scholar
Han, SY, North, JP, Canavan, T, Kim, N, Yu, SS. Merkel cell carcinoma. Hematol Oncol Clin North Am 2012;26:13511374.Google Scholar
Dalianis, T, Hirsch, HH. Human polyomaviruses in disease and cancer. Virology 2013;437:6372.Google Scholar
Bechert, CJ, Schnadig, V, Nawgiri, R. The Merkel cell carcinoma challenge: a review from the fine needle aspiration service. Cancer Cytopathol 2013;121:179188.Google Scholar
Sharma, A, Rana, DN, Desai, M. Cytomorphological evaluation of a small round blue cell tumour of the head and neck. Cytopathology 2007;18:197199.Google Scholar
Collins, BT, Elmberger, PG, Tani, EM, Bjornhagen, V, Ramos, RR. Fine-needle aspiration of Merkel cell carcinoma of the skin with cytomorphology and immunocytochemical correlation. Diagn Cytopathol 1998;18:251257.Google Scholar
Jensen, K, Kohler, S, Rouse, RV. Cytokeratin staining in Merkel cell carcinoma: an immunohistochemical study of cytokeratins 5/6, 7, 17, and 20. Appl Immunohistochem Mol Morphol 2000;8:310315.Google Scholar
Llombart, B, Monteagudo, C, Lopez-Guerrero, JA, Carda, C, Jorda, E, Sanmartin, O, et al. Clinicopathological and immunohistochemical analysis of 20 cases of Merkel cell carcinoma in search of prognostic markers. Histopathology 2005;46:622634.Google Scholar
Calder, KB, Coplowitz, S, Schlauder, S, Morgan, MB. A case series and immunophenotypic analysis of CK20−/CK7+ primary neuroendocrine carcinoma of the skin. J Cutan Pathol 2007;34:918923.Google Scholar
Cheuk, W, Kwan, MY, Suster, S, Chan, JK. Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med 2001;125:228231.Google Scholar
Leech, SN, Kolar, AJ, Barrett, PD, Sinclair, SA, Leonard, N. Merkel cell carcinoma can be distinguished from metastatic small cell carcinoma using antibodies to cytokeratin 20 and thyroid transcription factor 1. J Clin Pathol 2001;54:727729.Google Scholar
Dong, HY, Liu, W, Cohen, P, Mahle, CE, Zhang, W. B-cell specific activation protein encoded by the PAX-5 gene is commonly expressed in Merkel cell carcinoma and small cell carcinomas. Am J Surg Pathol 2005;29:687692.Google Scholar
Kolhe, R, Reid, MD, Lee, JR, Cohen, C, Ramalingam, P. Immunohistochemical expression of PAX5 and TdT by Merkel cell carcinoma and pulmonary small cell carcinoma: a potential diagnostic pitfall but useful discriminatory marker. Int J Clin Exp Pathol 2013;6:142147.Google Scholar
Feinmesser, M, Halpern, M, Kaganovsky, E, Brenner, B, Fenig, E, Hodak, E, et al. c-kit expression in primary and metastatic Merkel cell carcinoma. Am J DermatoPathol 2004;26:458462.Google Scholar
Yang, DT, Holden, JA, Florell, SR. CD117, CK20, TTF-1, and DNA topoisomerase II-alpha antigen expression in small cell tumors. J Cutan Pathol 2004;31:254261.Google Scholar
Rajagopalan, A, Browning, D, Salama, S. CD99 expression in Merkel cell carcinoma: a case series with an unusual paranuclear dot-like staining pattern. J Cutan Pathol 2013;40:1924.Google Scholar
Buresh, CJ, Oliai, BR, Miller, RT. Reactivity with TdT in Merkel cell carcinoma: a potential diagnostic pitfall. Am J Clin Pathol 2008;129:894898.Google Scholar
Asioli, S, Righi, A, Volante, M, Eusebi, V, Bussolati, G. p63 expression as a new prognostic marker in Merkel cell carcinoma. Cancer 2007;110:640647.Google Scholar
Filtenborg-Barnkob, BE, Bzorek, M. Expression of anaplastic lymphoma kinase in Merkel cell carcinomas. Hum Pathol 2013;44:16561664.Google Scholar

References

Taxy, J, Husain, A, Montag, A, eds. Biopsy Interpretation: The Frozen Section. Philadelphia PA: Lippincott Williams & Wilkins, 2010.Google Scholar
Horn, RC. What can be expected of the surgical pathologist from frozen-section examination. Surg Clin North Am 1962; 42:443454.Google Scholar
Ackerman, LV, Ramirez, GA. The indications for and limitations of frozen-section diagnosis. Br J Surg 1959; 46: 336350.Google Scholar
Asa, SL. Practical pituitary pathology: what does the pathologist need to know? Arch Pathol Lab Med 2008; 132:12311240Google Scholar
Asa, SL. Atlas of Tumor Pathology, 4th Series, Fascicle 15: Tumors of the Pituitary Gland. Bethesda, MD: ARP Press, 2011.Google Scholar
Mete, O, Asa, SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol 2012; 22: 443453.Google Scholar
Lang, H-D, Saeger, W, Lüdecke, DK, Muller, D. Rapid frozen section diagnosis of pituitary tumors. Endocr. Pathol 1990;1:116122.Google Scholar
Lloyd, RV. Frozen sections in the diagnosis of pituitary lesions. In Lloyd, RV, ed. Surgical Pathology of the Pituitary Gland. Philadelphia, PA: WB Saunders, 1993.Google Scholar
LiVolsi, VA, Asa, SL, eds. Endocrine Pathology. Philadelphia, PA: Churchill Livingstone, 2002.Google Scholar
Dellelis, RA. Atlas of Tumor Pathology, 3rd Series, Fascicle 6: Tumors of the Parathyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1991.Google Scholar
Wong, KS, Lewis, JS Jr., Gottipati, S, Chernock, RD. Utility of birefringent crystal identification by polarized light microscopy in distinguishing thyroid from parathyroid tissue on intraoperative frozen sections. Am J Surg Pathol 2014;38:12121219.Google Scholar
Baloch, ZW, LiVolsi, VA. Pathology of the parathyroid glands in hyperparathyroidism. Semin Diagn Pathol 2013; 30:165177.Google Scholar
Calò, PG, Pisano, G, Tatti, A, Medas, F, Boi, F, Mariotti, S, Nicolosi, A. Intraoperative parathyroid hormone assay during focused parathyroidectomy for primary hyperparathyroidism: is it really mandatory? Minerva Chir 2012;67:337342.Google Scholar
Baloch, ZW, Livolsi, VA. Follicular-patterned afflictions of the thyroid gland: reappraisal of the most discussed entity in endocrine pathology. Endocr Pathol 2014; 25: 1220.Google Scholar
Mete, O, Asa, SL. Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv Anat Pathol 2012; 19:363373.Google Scholar
Mete, O, Asa, SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol 2011; 24:15451552.Google Scholar
Antic, T, Taxy, JB. Thyroid frozen section: supplementary or unnecessary? Am J Surg Pathol 2013;37:282286.Google Scholar

References

DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Lloyd, RV. Adrenal cortical tumors, pheochromocytomas and paragangliomas. Mod Pathol 2011;24(suppl 2):S58S65.Google Scholar
Bosman, F, Carneiro, F, Hruban, RH, Theise, ND, eds. WHO Classification of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010.Google Scholar
Kontogeorgos, G. Classification and pathology of pituitary tumors. Endocrine 2005;28:2735.Google Scholar
Al-Shraim, M, Asa, SL. The 2004 World Health Organization classification of pituitary tumors: what is new? Acta NeuroPathol 2006;111:17.Google Scholar
Saeger, W, Lüdecke, DK, Buchfelder, M, Fahlbusch, R, Quabbe, HJ, Petersenn, S. Pathohistological classification of pituitary tumors: 10 years of experience with the German Pituitary Tumor Registry. Eur J Endocrinol 2007;156:203216.Google Scholar
Medeiros, LJ, Weiss, LM. New developments in the pathologic diagnosis of adrenal cortical neoplasms. A review. Am J Clin Pathol 1992;97:7383.Google Scholar
Fuhrman, SA, Lasky, LC, Limas, C. Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 1982;6:655663.Google Scholar
LiVolsi, VA. Papillary thyroid carcinoma: an update. Mod Pathol 2011;24(suppl 2:S1S9.Google Scholar
Dabbs, D. Diagnostic Immunohistochemistry: Theranostic and Genomic Applications, 4th edn. Philadelphia, PA: Elsevier, 2013.Google Scholar
Shi, SR, Shi, Y, Taylor, CR. Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem CytoChem 2011;59:1332.Google Scholar
Sino Biological. Immunohistochemical Methods. Beijing: Sino Biological, 2015 (http://www.immunohistochemistry.us/what-is-immunohistochemistry/immunohistochemical-methods.html, accessed 27 July 2015).Google Scholar
Werling, RW, Yaziji, H, Bacchi, CE, Gown, AM CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 2003;27:303310.Google Scholar
Kaimaktchiev, V, Terracciano, L, Tornillo, L, Spichtin, H, Stoios, D, Bundi, M, Korcheva, V, Mirlacher, M, Loda, M, Sauter, G, Corless, CL. The homeobox intestinal differentiation factor CDX2 is selectively expressed in gastrointestinal adenocarcinomas. Mod Pathol 2004;17:13921399.Google Scholar
Gill, AJ, Benn, DE, Chou, A, Clarkson, A, Muljono, A, Meyer-Rochow, GY, Richardson, AL, Sidhu, SB, Robinson, BG, Clifton-Bligh, RJ. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum Pathol 2010;41:805814.Google Scholar
Volante, M, Brizzi, MP, Faggiano, A, La Rosa, S, Rapa, I, Ferrero, A, Mansueto, G, Righi, L, Garancini, S, Capella, C, De Rosa, G, Dogliotti, L, Colao, A, Papotti, M. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 2007;20:11721182.Google Scholar
Koperek, O, Kornauth, C, Capper, D, Berghoff, AS, Asari, R, Niederle, B, von Deimling, A, Birner, P, Preusser, M. Immunohistochemical detection of the BRAFV600E-mutated protein in papillary thyroid carcinoma Am J Surg Pathol 2012;36:844850.Google Scholar
Salehi, F, Scheithauer, BW, Kros, JM, Lau, Q, Fealey, M, Erickson, D, Kovacs, K, Horvath, E, Lloyd, RV. MGMT promoter methylation and immunoexpression in aggressive pituitary adenomas and carcinomas. J Neurooncol 2011;104:647657.Google Scholar
Widhalm, G, Wolfsberger, S, Preusser, M, Woehrer, A, Kotter, MR, Czech, T, Marosi, C, Knosp, E. O-Methylguanine DNA methyltransferase immunoexpression in nonfunctioning pituitary adenomas: are progressive tumors potential candidates for temozolomide treatment? Cancer 2009;115:10701080.Google Scholar

References

Okamoto, R, Ogawa, S, Nowak, D, Kawamata, N, Akagi, T, Kato, M, Sanada, M, Weiss, T, Haferlach, C, Dugas, M, Ruckert, C, Haferlach, T, Koeffler, HP. Genomic profiling of adult acute lymphoblastic leukemia by single nucleotide polymorphism oligonucleotide microarray and comparison to pediatric acute lymphoblastic leukemia. Haematologica 2010;95:14811488.Google Scholar
Schultz, RA, Delioukina, M, Bedell, V, Smith, DD, Forman, SJ, McDaniel, LD, Ballif, BC, Shaffer, LG, Slovak, ML. Evaluation of chronic lymphocytic leukemia by BAC-based microarray analysis. Mol Cytogenet 2011;4:4.Google Scholar
Slovak, ML, Bedell, V, Hsu, YH, Estrine, DB, Nowak, NJ, Delioukina, ML, Weiss, LM, Smith, DD, Forman, SJ. Molecular karyotypes of Hodgkin and Reed–Sternberg cells at disease onset reveal distinct copy number alterations in chemosensitive vs. refractory Hodgkin lymphoma. Clin Cancer Res 2011;17:34433454.Google Scholar
Walter, MJ, Payton, JE, Ries, RE, Shannon, WD, Deshmukh, H, Zhao, Y, Baty, J, Heath, S, Westervelt, P, Watson, MA, Tomasson, MH, Nagarajan, R, O'Gara, BP, Bloomfield, CD, Mrozek, K, Selzer, RR, Richmond, TA, Kitzman, J, Geoghegan, J, Eis, PS, Maupin, R, Fulton, RS, McLellan, M, Wilson, RK, Mardis, ER, Link, DC, Graubert, TA, DiPersio, JF, Ley, TJ. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci USA 2009;106:1295012955.Google Scholar
Pinkel, D, Segraves, R, Sudar, D, Clark, S, Poole, I, Kowbel, D, Collins, C, Kuo, WL, Chen, C, Zhai, Y, Dairkee, SH, Ljung, BM, Gray, JW, Alberston, DG. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998;20:207211.Google Scholar
Bejjani, BA, Shaffer, LG. Application of array-based comparative genomic hybridization to clinical diagnosis. J Mol Diagn 2006;8:528533.Google Scholar
Cooley, LD, Lebo, M, Li, MM, Slovak, ML, Wolff, DJ. American College of Medical Genetics and Genomics technical standards and guidelines: microarray analysis for chromosome abnormalities in neoplastic disorders. Genet Med 2013;15:484494.Google Scholar
Maciejewski, JP, Tiu, RV, O'Keefe, C. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br J Haematol 2009;146:479488.Google Scholar
Hagenkord, JM, Gatalica, Z, Jonasch, E, Monzon, FA. Clinical genomics of renal epithelial tumors. Cancer Genet 2011;204:285297.Google Scholar
Dahm, R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 2008;122:565581.Google Scholar
Peirson, SN, Butler, JN. RNA extraction from mammalian tissues. Meth Mol Biol 2007;362:315327.Google Scholar
Chomczynski, P, Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc 2006;1:581585.Google Scholar
Bird, IM. Extraction of RNA from cells and tissue. Meth Mol Med 2005;108:139148.Google Scholar
Stangegaard, M, Frøslev, TG, Frank-Hansen, R, Hansen, AJ, Morling, N. Automated extraction of DNA from blood and PCR setup using a Tecan Freedom EVO liquid handler for forensic genetic STR typing of reference samples. J Lab Autom 2011;16:134140.Google Scholar
Aplenc, R, Orudjev, E, Swoyer, J, Manke, B, Rebbeck, T. Differential bone marrow aspirate DNA yields from commercial extraction kits. Leukemia 2002;16:18651866.Google Scholar
Walsh, PS, Metzger, DA, Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 1991;10:506513.Google Scholar
Erlich, HA. Polymerase chain reaction. J Clin Immunol 1989;9:437447.Google Scholar
Erlich, HA, Gelfand, D, Sninsky, JJ.Recent advances in the polymerase chain reaction. Science 1991;252:16431651.Google Scholar
Henegariu, O, Heerema, NA, Dlouhy, SR, Vance, GH, Vogt, PH, Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 1997;23:504511.Google Scholar
McPherson, MJ, Moller, SG. PCR. New York: Springer, 2000.Google Scholar
Hamfjord, J, Stangeland, AM, Skrede, ML, Tveit, KM, Ikdahl, T, Kure, EH. Wobble-enhanced ARMS method for detection of KRAS and BRAF mutations. Diagn Mol Pathol 2011;20:158165.Google Scholar
Islam, M, Awan, FR, Baig, SM. Development of ARMS-PCR assay for genotyping of Pro12Ala SNP of PPARG gene: a cost effective way for case–control studies of type 2 diabetes in developing countries. Mol Biol Rep 2014;41:55855591.Google Scholar
Sanger, F, Nicklen, S. Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977;74:54635467.Google Scholar
Volikos, E, Robinson, J, Aittomaki, K, Mecklin, JP, Jarvinen, H, Westerman, AM, de Rooji, FW, Vogel, T, Moeslein, G, Launonen, V, Tomlinson, IP, Silver, AR, Aaltonen, LA. LKB1 exonic and whole gene deletions are a common cause of Peutz–Jeghers syndrome. J. Med Genet 2006;43:e18.Google Scholar
Nyrén, P. The history of pyrosequencing. Meth Mol Biol 2007;373: 114.Google Scholar
Boland, CR, Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010;138:20732087.Google Scholar
Buecher, B, Cacheux, W, Rouleau, E, Dieumegard, B, Mitry, E, Lièvre, A. Role of microsatellite instability in the management of colorectal cancers. Dig Liver Dis 2013;45:441449.Google Scholar
Jeffreys, AJ, Wilson, V, Thein, S.W., Hypervariable “minisatellite” regions in human DNA. Nature 1984;314:6773.Google Scholar
Radonic, A, Thulke, S, Mackay, IM, Landt, O, Siegert, W, Nitsche, A, Guideline for reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 2004;313:856862.Google Scholar
Dheda, K, Huggett, JF, Bustin, SA, Johnson, MA, Rook, G, Zumla, A, Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 2004;37:112119.Google Scholar
Lang, AH, Drexel, H, Geller-Rhomberg, S, Stark, N, Winder, T, Geiger, K, Muendlein, A. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF. J Mol Diagn 2011;13:2328.Google Scholar
Sykes, PJ, Neoh, SH, Morley, AA, et al. Quantitation of targets for PCR by use of limiting dilution. Biotechniques 1992;13:444449.Google Scholar
Dressman, D, Yan, H, Traverso, G, Kinzler, KW, Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 2003;100:88178822.Google Scholar
Rusk, N. Torrents of sequence. Nat Meth 2011;8:44.Google Scholar
Bentley, DR, Balasubramanian, S, Swerdlow, HP, Smith, GP, Milton, J, Brown, CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008;456:5359.Google Scholar

References

Fluck, CE, Mullis, PE, Pandey, AV: Modeling of human P450 oxidoreductase structure by in silico mutagenesis and MD simulation. Mol Cell Endocrinol 2009;313:1722.Google Scholar
Bilek, R, Starka, L: The computer modelling of human TRH receptor, TRH and TRH-like peptides. Physiol Res 2005;54:141150.Google Scholar
Raposo, JF, Sobrinho, LG, Ferreira, HG: A minimal mathematical model of calcium homeostasis. J Clin Endocrinol Metab 2002;87:43304340.Google Scholar
Cairns, LA, Crotta, S, Minuzzo, M, Ricciardi-Castagnoli, P, Pozzi, L, Ottolenghi, S: Immortalization of neuro-endocrine cells from adrenal tumors arising in SV40 T-transgenic mice. Oncogene 1997;14:30933098.Google Scholar
Voglauer, R, Grillari, J, Fortschegger, K, Wieser, M, Sterovsky, T, Gunsberg, P, Katinger, H, Pfragner, R: Establishment of human fibroma cell lines from a MEN1 patient by introduction of either hTERT or SV40 early region. Int J Oncol 2005;26:961970.Google Scholar
Ueda, T, Sasaki, M, Elia, AJ, Chio, II, Hamada, K, Fukunaga, R, Mak, TW: Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci USA 2010;107:1398413990.Google Scholar
Werminghaus, P, Haase, M, Hornsby, PE, Schinner, S, Schott, M, Malendowicz, LK, Lammers, BJ, Goretzki, PE, Muller-Mattheis, V, Giessing, Markus, Willenberg, HS: Hedgehog-signaling is upregulated in non-producing human adrenal adenomas and antagonism of hedgehog-signaling inhibits proliferation of NCI-H295R cells and an immortalized primary human adrenal cell line. J Steroid Biochem Mol Biol 2014;139:715.Google Scholar
American Type Culture Collection. 2015 Collection. Washington, DC: American Type Culture Collection (http://www.atcc.org/, accessed 27 July 2015).Google Scholar
Buonassisi, V, Sato, G, Cohen, AI: Hormone-producing cultures of adrenal and pituitary tumor origin. Proc Natl Acad Sci USA 1962;48:11841190.Google Scholar
Yasamura, Y, Tashjian, AH Jr., Sato, GH: Establishment of four functional, clonal strains of animal cells in culture. Science 1966;154:11861189.Google Scholar
Tashjian, AH Jr., Yasumura, Y, Levine, L, Sato, GH, Parker, ML: Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 1968;82:342352.Google Scholar
Judd, AM, Login, IS, Kovacs, K, Ross, PC, Spangelo, BL, Jarvis, WD, MacLeod, RM: Characterization of the MMQ cell, a prolactin-secreting clonal cell line that is responsive to dopamine. Endocrinology 1988;123:23412350.Google Scholar
Reymond, MJ, Nansel, DD, Burrows, GH, Neaves, WB, Porter, JC: A new clonal strain of rat pituitary tumour cells: a model for non-regulated secretion of prolactin. Acta Endocrinol (Copenh) 1984;106:459470.Google Scholar
Jin, L, Kulig, E, Qian, X, Scheithauer, BW, Eberhardt, NL, Lloyd, RV: A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of SV40 large T-antigen Endocr Pathol 1998;9:169184.Google Scholar
Tanaka, J, Ogura, T, Sato, H, Hatano, M: Establishment and biological characterization of an in vitro human cytomegalovirus latency model. Virology 1987;161:6272.Google Scholar
Kurebayashi, J, Tanaka, K, Otsuki, T, Moriya, T, Kunisue, H, Uno, M, Sonoo, H: All-trans-retinoic acid modulates expression levels of thyroglobulin and cytokines in a new human poorly differentiated papillary thyroid carcinoma cell line, KTC-1. J Clin Endocrinol Metab 2000;85:28892896.Google Scholar
Estour, B, Van Herle, AJ, Juillard, GJ, Totanes, TL, Sparkes, RS, Giuliano, AE, Klandorf, H: Characterization of a human follicular thyroid carcinoma cell line (UCLA RO 82 W-1). Virchows Arch B Cell Pathol Incl Mol Pathol 1989;57:167174.Google Scholar
Ito, T, Seyama, T, Hayashi, Y, Hayashi, T, Dohi, K, Mizuno, T, Iwamoto, K, Tsuyama, N, Nakamura, N, Akiyama, M: Establishment of 2 human thyroid-carcinoma cell-lines (8305c, 8505c) bearing p53 gene-mutations. Int J Oncol 1994;4:583586.Google Scholar
Berger, CL, de Bustros, A, Roos, BA, Leong, SS, Mendelsohn, G, Gesell, MS, Baylin, SB: Human medullary thyroid carcinoma in culture provides a model relating growth dynamics, endocrine cell differentiation, and tumor progression. J Clin Endocrinol Metab 1984;59:338343.Google Scholar
Asakawa, H, Kobayashi, T, Komoike, Y, Yanagawa, T, Takahashi, M, Wakasugi, E, Maruyama, H, Tamaki, Y, Matsuzawa, Y, Monden, M: Establishment of anaplastic thyroid carcinoma cell lines useful for analysis of chemosensitivity and carcinogenesis. J Clin Endocrinol Metab 1996;81:35473552.Google Scholar
Ambesi-Impiombato, FS, Parks, LA, Coon, HG: Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci USA 1980;77:34553459.Google Scholar
Fusco, A, Portella, G, Di Fiore, PP, Berlingieri, MT, Di Lauro, R, Schneider, AB, Vecchio, G: A mos oncogene-containing retrovirus, myeloproliferative sarcoma virus, transforms rat thyroid epithelial cells and irreversibly blocks their differentiation pattern. J Virol 1985;56:284292.Google Scholar
Bjorklund, P, Akerstrom, G, Westin, G: Activated beta-catenin in the novel human parathyroid tumor cell line sHPT-1. Biochem Biophys Res Commun 2007;352:532536.Google Scholar
Sakaguchi, K, Santora, A, Zimering, M, Curcio, F, Aurbach, GD, Brandi, ML: Functional epithelial cell line cloned from rat parathyroid glands. Proc Natl Acad Sci USA 1987;84:32693273.Google Scholar
Greene, LA, Tischler, AS: Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 1976;73:24242428.Google Scholar
Powers, JF, Evinger, MJ, Tsokas, P, Bedri, S, Alroy, J, Shahsavari, M, Tischler, AS: Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice. Cell Tissue Res 2000;302:309320.Google Scholar
Gazdar, AF, Oie, HK, Shackleton, CH, Chen, TR, Triche, TJ, Myers, CE, Chrousos, GP, Brennan, MF, Stein, CA, La Rocca, RV: Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res 1990;50:54885496.Google Scholar
Gueli, N, Toto, G, Palmieri, G, Delfino, A, Ferrini, U: In vitro growth of a cell line originated from a human insulinoma J Exp Clin Cancer Res 1987;4:281285.Google Scholar
Gazdar, AF, Chick, WL, Oie, HK, Sims, HL, King, DL, Weir, GC, Lauris, V: Continuous, clonal, insulin- and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc Natl Acad Sci USA 1980;77:35193523.Google Scholar
Bhathena, SJ, Awoke, S, Voyles, NR, Wilkins, SD, Recant, L, Oie, HK, Gazdar, AF: Insulin, glucagon, and somatostatin secretion by cultured rat islet cell tumor and its clones. Proc Soc Exp Biol Med 1984;175:3538.Google Scholar
Efrat, S, Linde, S, Kofod, H, Spector, D, Delannoy, M, Grant, S, Hanahan, D, Baekkeskov, S: Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci USA 1988;85:90379041.Google Scholar
Miyazaki, J, Araki, K, Yamato, E, Ikegami, H, Asano, T, Shibasaki, Y, Oka, Y, Yamamura, K: Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 1990;127:126132.Google Scholar
Radvanyi, F, Christgau, S, Baekkeskov, S, Jolicoeur, C, Hanahan, D: Pancreatic beta cells cultured from individual preneoplastic foci in a multistage tumorigenesis pathway: a potentially general technique for isolating physiologically representative cell lines. Mol Cell Biol 1993;13:42234232.Google Scholar
Parekh, D, Ishizuka, J, Townsend, CM Jr., Haber, B, Beauchamp, RD, Karp, G, Kim, SW, Rajaraman, S, Greeley, G Jr., Thompson, JC: Characterization of a human pancreatic carcinoid in vitro: morphology, amine and peptide storage, and secretion. Pancreas 1994;9:8390.Google Scholar
Pettengill, OS, Sorenson, GD, Wurster-Hill, DH, Curphey, TJ, Noll, WW, Cate, CC, Maurer, LH: Isolation and growth characteristics of continuous cell lines from small-cell carcinoma of the lung. Cancer 1980;45:906918.Google Scholar
Ishikawa, M, Kimura, K, Tachibana, T, Hashimoto, H, Shimojo, M, Ueshiba, H, Tsuboi, K, Shibuya, K, Yoshino, G: Establishment and characterization of a novel cell line derived from a human small cell lung carcinoma that secretes parathyroid hormone, parathyroid hormone-related protein, and pro-opiomelanocortin. Hum Cell 2010;23:5864.Google Scholar
Pfragner, R, Behmel, A, Hoger, H, Beham, A, Ingolic, E, Stelzer, I, Svejda, B, Moser, VA, Obenauf, AC, Siegl, V, Haas, O, Niederle, B: Establishment and characterization of three novel cell lines – P-STS, L-STS, H-STS – derived from a human metastatic midgut carcinoid. Anticancer Res 2009;29:19511961.Google Scholar
Schweppe, RE, Klopper, JP, Korch, C, Pugazhenthi, H, Benezra, M, Knauf, JA, Fagin, JA, Marlow, LA, Copland, JA, Smallridge, RC, Haugen, BR: Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross‐contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 2008;93:43314341.Google Scholar
Gordon, MN, Schechter, JE, Felicio, LS, Finch, CE: Spontaneous tumors in aging female mice are more prevalent in the lateral pituitary zones. Neurobiol Aging 1987;8:6770.Google Scholar
Shultz, LD, Brehm, MA, Garcia-Martinez, JV, Greiner, DL: Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012;12:786798.Google Scholar
Jaenisch, R, Mintz, B: Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci USA 1974;71:12501254.Google Scholar
Metzger, D, Clifford, J, Chiba, H, Chambon, P: Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci USA 1995;92:69916995.Google Scholar
Lohr, H, Hammerschmidt, M: Zebrafish in endocrine systems: recent advances and implications for human disease. Annu Rev Physiol 2011;73:183211.Google Scholar
Ezzat, S, Zheng, L, Winer, D, Asa, SL: Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 2006;20:29652975.Google Scholar
Yamashita, M, Oki, Y, Iino, K, Hayashi, C, Yogo, K, Matsushita, F, Sasaki, S, Nakamura, H: The role of store-operated Ca2+ channels in adrenocorticotropin release by rat pituitary cells. Regul Pept 2009;156:5764.Google Scholar
Gruszka, A, Ren, SG, Dong, J, Culler, MD, Melmed, S: Regulation of growth hormone and prolactin gene expression and secretion by chimeric somatostatin-dopamine molecules. Endocrinology 2007;148:61076114.Google Scholar
Drouin, J, Labrie, F: Selective effect of androgens on LH and FSH release in anterior pituitary cells in culture. Endocrinology 1976;98:15281534.Google Scholar
Allen, RG, Herbert, E, Hinman, M, Shibuya, H, Pert, CB: Coordinate control of corticotropin, beta-lipotropin, and beta-endorphin release in mouse pituitary cell cultures. Proc Natl Acad Sci USA 1978;75:49724976.Google Scholar
Billestrup, N, Swanson, LW, Vale, W: Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci USA 1986;83:68546857.Google Scholar
Tateno, T, Asa, SL, Zheng, L, Mayr, T, Ullrich, A, Ezzat, S: The FGFR4G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLOS Genet 2011;7:e1002400.Google Scholar
Dorman, K, Shen, Z, Yang, C, Ezzat, S, Asa, SL: CtBP1 interacts with Ikaros and modulates pituitary tumor cell survival and response to hypoxia. Mol Endocrinol 2012;26:447457.Google Scholar
Ezzat, S, Zhu, X, Loeper, S, Fischer, S, Asa, SL: Tumor-derived Ikaros 6 acetylates the Bcl-XL promoter to up-regulate a survival signal in pituitary cells. Mol Endocrinol 2006;20:29762986.Google Scholar
Liu, W, Asa, SL, Ezzat, S: Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 independent of PTEN in pituitary corticotroph cells. Brain Pathol 2002;12:412419.Google Scholar
Zhu, X, Lee, K, Asa, SL, Ezzat, S: Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. Am J Pathol 2007;170:16181628.Google Scholar
Loeper, S, Asa, SL, Ezzat, S: Ikaros modulates cholesterol uptake: a link between tumor suppression and differentiation. Cancer Res 2008;68:37153723.Google Scholar
Leung, CK, Paterson, JA, Imai, Y, Shiu, RP: Transplantation of ACTH-secreting pituitary tumor cells in athymic nude mice. Virchows Arch A Pathol Anat Histol 1982;396:303312.Google Scholar
Giacomini, D, Paez-Pereda, M, Theodoropoulou, M, Labeur, M, Refojo, D, Gerez, J, Chervin, A, Berner, S, Losa, M, Buchfelder, M, Renner, U, Stalla, GK, Arzt, E: Bone morphogenetic protein-4 inhibits corticotroph tumor cells: involvement in the retinoic acid inhibitory action. Endocrinology 2006;147:247256.Google Scholar
Ezzat, S, Mader, R, Yu, S, Ning, T, Poussier, P, Asa, SL: Ikaros integrates endocrine and immune system development. J Clin Invest 2005;115:10211029.Google Scholar
Ezzat, S, Yu, S, Asa, SL: The zinc finger Ikaros transcription factor regulates pituitary growth hormone and prolactin gene expression through distinct effects on chromatin accessibility. Mol Endocrinol 2005;19:10041011.Google Scholar
Asa, SL: Transgenic and knockout mouse models clarify pituitary development, function and disease. Brain Pathol 2001, 11:371383.Google Scholar
Ezzat, S, Mader, R, Fischer, S, Yu, S, Ackerley, C, Asa, SL: An essential role for the hematopoietic transcription factor Ikaros in hypothalamic–pituitary-mediated somatic growth. Proc Natl Acad Sci USA 2006;103:22142219.Google Scholar
Lin, SC, Lin, CR, Gukovsky, I, Lusis, AJ, Sawchenko, PE, Rosenfeld, MG: Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 1993;364:208213.Google Scholar
Ryther, RC, McGuinness, LM, Phillips, JA 3rd, Moseley, CT, Magoulas, CB, Robinson, IC, Patton, JG: Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum Genet 2003;113:140148.Google Scholar
Sun, Y, Bak, B, Schoenmakers, N, van Trotsenburg, AS, Oostdijk, W, Voshol, P, Cambridge, E, White, JK, le Tissier, P, Gharavy, SN, Martinez-Barbera, JP, Stokvis-Brantsma, WH, Vulsma, T, Kempers, MJ, Persani, L, Campi, I, Bonomi, M, Beck-Peccoz, P, Zhu, H, Davis, TM, Hokken-Koelega, AC, Del Blanco, DG, Rangasami, JJ, Ruivenkamp, CA, Laros, JF, Kriek, M, Kant, SG, Bosch, CA, Biermasz, NR, Appelman-Dijkstra, NM, Corssmit, EP, Hovens, GC, Pereira, AM, den Dunnen, JT, Wade, MG, Breuning, MH, Hennekam, RC, Chatterjee, K, Dattani, MT, Wit, JM, Bernard, DJ: Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat Genet 2012;44:13751381.Google Scholar
Jacks, T, Fazeli, A, Schmitt, EM, Bronson, RT, Goodell, MA, Weinberg, RA: Effects of an Rb mutation in the mouse. Nature 1992;359:295300.Google Scholar
Yamasaki, L, Bronson, R, Williams, BO, Dyson, NJ, Harlow, E, Jacks, T: Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−) mice. Nat Genet 1998;18:360364.Google Scholar
Lee, EY, Cam, H, Ziebold, U, Rayman, JB, Lees, JA, Dynlacht, BD: E2F4 loss suppresses tumorigenesis in R−b mutant mice. Cancer Cell 2002;2:463472.Google Scholar
Kiyokawa, H, Kineman, RD, Manova-Todorova, KO, Soares, VC, Hoffman, ES, Ono, M, Khanam, D, Hayday, AC, Frohman, LA, Koff, A: Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 1996;85:721732.Google Scholar
Nakayama, K, Ishida, N, Shirane, M, Inomata, A, Inoue, T, Shishido, N, Horii, I, Loh, DY, Nakayama, K: Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85:707720.Google Scholar
Chesnokova, V, Kovacs, K, Castro, AV, Zonis, S, Melmed, S: Pituitary hypoplasia in Pttg−/− mice is protective for Rb+/− pituitary tumorigenesis. Mol Endocrinol 2005;19:23712379.Google Scholar
Eicher, EM, Beamer, WG: Inherited ateliotic dwarfism in mice. Characteristics of the mutation, little, on chromosome 6. J Hered 1976;67:8791.Google Scholar
Parks, JS, Herd, JE, Wurzel, JM, Martial, JA: Structural analysis of rodent growth hormone genes: application to genetic forms of hypopituitarism. Endocrinology 1982;110:16721675.Google Scholar
Lew, D, Brady, H, Klausing, K, Yaginuma, K, Theill, LE, Stauber, C, Karin, M, Mellon, PL: GHF-1-promoter-targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice. Genes Dev 1993;7:683693.Google Scholar
Shariat, N, Ryther, RC, Phillips, JA 3rd, Robinson, IC, Patton, JG: Rescue of pituitary function in a mouse model of isolated growth hormone deficiency type II by RNA interference. Endocrinology 2008;149:580586.Google Scholar
Herzog, W, Zeng, X, Lele, Z, Sonntag, C, Ting, JW, Chang, CY, Hammerschmidt, M: Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog. Dev Biol 2003;254:3649.Google Scholar
Sbrogna, JL, Barresi, MJ, Karlstrom, RO: Multiple roles for hedgehog signaling in zebrafish pituitary development. Dev Biol 2003;254:1935.Google Scholar
Liu, NA, Huang, H, Yang, Z, Herzog, W, Hammerschmidt, M, Lin, S, Melmed, S: Pituitary corticotroph ontogeny and regulation in transgenic zebrafish. Mol Endocrinol 2003;17:959966.Google Scholar
Russfield, AB: Experimental endocrinopathies. Meth Achiev Exp Pathol 1975;7:132148.Google Scholar
Zhu, X, Lin, CR, Prefontaine, GG, Tollkuhn, J, Rosenfeld, MG: Genetic control of pituitary development and hypopituitarism. Curr Opin Genet Dev 2005;15:332340.Google Scholar
Pogoda, HM, Hammerschmidt, M: Molecular genetics of pituitary development in zebrafish. Semin Cell Dev Biol 2007;18:543558.Google Scholar
Cohen, Y, Xing, M, Mambo, E, Guo, Z, Wu, G, Trink, B, Beller, U, Westra, WH, Ladenson, PW, Sidransky, D: BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003;95:625627.Google Scholar
Davies, H, Bignell, GR, Cox, C, Stephens, P, Edkins, S, Clegg, S, Teague, J, Woffendin, H, Garnett, MJ, Bottomley, W, Davis, N, Dicks, E, Ewing, R, Floyd, Y, Gray, K, Hall, S, Hawes, R, Hughes, J, Kosmidou, V, Menzies, A, Mould, C, Parker, A, Stevens, C, Watt, S, Hooper, S, Wilson, R, Jayatilake, H, Gusterson, BA, Cooper, C, Shipley, J, Hargrave, D, Pritchard-Jones, K, Maitland, N, Chenevix-Trench, G, Riggins, GJ, Bigner, DD, Palmieri, G, Cossu, A, Flanagan, A, Nicholson, A, Ho, JW, Leung, SY, Yuen, ST, Weber, BL, Seigler, HF, Darrow, TL, Paterson, H, Marais, R, Marshall, CJ, Wooster, R, Stratton, MR, Futreal, PA: Mutations of the BRAF gene in human cancer. Nature 2002;417:949954.Google Scholar
Saavedra, HI, Knauf, JA, Shirokawa, JM, Wang, J, Ouyang, B, Elisei, R, Stambrook, PJ, Fagin, JA: The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 2000;19:39483954.Google Scholar
Mitsutake, N, Knauf, JA, Mitsutake, S, Mesa, C Jr., Zhang, L, Fagin, JA: Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res 2005;65:24652473.Google Scholar
Knauf, JA, Ouyang, B, Knudsen, ES, Fukasawa, K, Babcock, G, Fagin, JA: Oncogenic RAS induces accelerated transition through G2/M and promotes defects in the G2 DNA damage and mitotic spindle checkpoints. J Biol Chem 2006;281:38003809.Google Scholar
Logan, A, Black, EG, Gonzalez, AM, Buscaglia, M, Sheppard, MC: Basic fibroblast growth factor: an autocrine mitogen of rat thyroid follicular cells? Endocrinology 1992;130:23632372.Google Scholar
Isozaki, O, Emoto, N, Tsushima, T, Sato, Y, Shizume, K, Demura, H, Akamizu, T, Kohn, LD: Opposite regulation of deoxyribonucleic acid synthesis and iodide uptake in rat thyroid cells by basic fibroblast growth factor: correlation with opposite regulation of c-fos and thyrotropin receptor gene expression. Endocrinology 1992;131:27232732.Google Scholar
St. Bernard, R, Zheng, L, Liu, W, Winer, D, Asa, SL, Ezzat, S: Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology 2005;146:11451153.Google Scholar
Kondo, T, Zheng, L, Liu, W, Kurebayashi, J, Asa, SL, Ezzat, S: Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase pathway to modulate thyroid cancer progression. Cancer Res 2007;67:54615470.Google Scholar
Kondo, T, Zhu, X, Asa, SL, Ezzat, S: The cancer/testis antigen melanoma-associated antigen-A3/A6 is a novel target of fibroblast growth factor receptor 2-IIIb through histone H3 modifications in thyroid cancer. Clin Cancer Res 2007;13:47134720.Google Scholar
Liu, W, Cheng, S, Asa, SL, Ezzat, S: The melanoma-associated antigen A3 mediates fibronectin-controlled cancer progression and metastasis. Cancer Res 2008;68:81048112.Google Scholar
Guo, M, Liu, W, Serra, S, Asa, SL, Ezzat, S: FGFR2 isoforms support epithelial-stromal interactions in thyroid cancer progression. Cancer Res 2012;72:20172027.Google Scholar
Liu, W, Asa, SL, Fantus, IG, Walfish, PG, Ezzat, S: Vitamin D arrests thyroid carcinoma cell growth and induces p27 dephosphorylation and accumulation through PTEN/akt-dependent and -independent pathways. Am J Pathol 2002;160:511519.Google Scholar
Dackiw, AP, Ezzat, S, Huang, P, Liu, W, Asa, SL: Vitamin D3 administration induces nuclear p27 accumulation, restores differentiation, and reduces tumor burden in a mouse model of metastatic follicular thyroid cancer. Endocrinology 2004;145:58405846.Google Scholar
Liu, W, Wei, W, Winer, D, Bamberger, AM, Bamberger, C, Wagener, C, Ezzat, S, Asa, SL: CEACAM1 impedes thyroid cancer growth but promotes invasiveness: a putative mechanism for early metastases. Oncogene 2007;26:27472758.Google Scholar
Ahn, SH, Henderson, Y, Kang, Y, Chattopadhyay, C, Holton, P, Wang, M, Briggs, K, Clayman, GL: An orthotopic model of papillary thyroid carcinoma in athymic nude mice. Arch Otolaryngol Head Neck Surg 2008;134:190197.Google Scholar
Knauf, JA, Ma, X, Smith, EP, Zhang, L, Mitsutake, N, Liao, XH, Refetoff, S, Nikiforov, YE, Fagin, JA: Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005;65:42384245.Google Scholar
Jhiang, SM, Sagartz, JE, Tong, Q, Parker-Thornburg, J, Capen, CC, Cho, JY, Xing, S, Ledent, C: Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 1996;137:375378.Google Scholar
Henderson, YC, Toro-Serra, R, Chen, Y, Ryu, J, Frederick, MJ, Zhou, G, Gallick, GE, Lai, SY, Clayman, GL: Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck 2014;;36:375384.Google Scholar
Ezzat, S, Huang, P, Dackiw, A, Asa, SL: Dual inhibition of RET and FGFR4 restrains medullary thyroid cancer cell growth. Clin Cancer Res 2005;11:13361341.Google Scholar
De Falco, V, Buonocore, P, Muthu, M, Torregrossa, L, Basolo, F, Billaud, M, Gozgit, JM, Carlomagno, F, Santoro, M: Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. J Clin Endocrinol Metab 2013;98:E811E819.Google Scholar
Rose, NR: The genetics of autoimmune thyroiditis: the first decade. J Autoimmun 2011;37:8894.Google Scholar
Kawahara, M, Iwasaki, Y, Sakaguchi, K, Taguchi, T, Nishiyama, M, Nigawara, T, Kambayashi, M, Sawada, T, Jing, X, Miyajima, M, Terada, Y, Hashimoto, K, Suda, T: Involvement of GCMB in the transcriptional regulation of the human parathyroid hormone gene in a parathyroid-derived cell line PT-r: effects of calcium and 1,25(OH)2D3. Bone 2010;47:534541.Google Scholar
Flynn, JC, Gardas, A, Wan, Q, Gora, M, Alsharabi, G, Wei, WZ, Giraldo, AA, David, CS, Kong, YM, Banga, JP: Superiority of thyroid peroxidase DNA over protein immunization in replicating human thyroid autoimmunity in HLA-DRB1*0301 (DR3) transgenic mice. Clin Exp Immunol 2004;137:503512.Google Scholar
Flynn, JC, Gilbert, JA, Meroueh, C, Snower, DP, David, CS, Kong, YC, Banga, JP: Chronic exposure in vivo to thyrotropin receptor stimulating monoclonal antibodies sustains high thyroxine levels and thyroid hyperplasia in thyroid autoimmunity-prone HLA-DRB1*0301 transgenic mice. Immunology 2007;122:261267.Google Scholar
Fujii, Y, Tomic, M, Stojilkovic, SS, Iida, T, Brandi, ML, Ogino, Y, Sakaguchi, K: Effects of endothelin-1 on Ca2+ signaling and secretion in parathyroid cells. J Bone Miner Res 1995;10:716725.Google Scholar
Ho, C, Conner, DA, Pollak, MR, Ladd, DJ, Kifor, O, Warren, HB, Brown, EM, Seidman, JG, Seidman, CE: A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 1995;11:389394.Google Scholar
Yoshizawa, T, Handa, Y, Uematsu, Y, Takeda, S, Sekine, K, Yoshihara, Y, Kawakami, T, Arioka, K, Sato, H, Uchiyama, Y, Masushige, S, Fukamizu, A, Matsumoto, T, Kato, S: Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997;16:391396.Google Scholar
Meir, T, Levi, R, Lieben, L, Libutti, S, Carmeliet, G, Bouillon, R, Silver, J, Naveh-Many, T: Deletion of the vitamin D receptor specifically in the parathyroid demonstrates a limited role for the receptor in parathyroid physiology. Am J Physiol Renal Physiol 2009;297:F1192F1198.Google Scholar
Urakawa, I, Yamazaki, Y, Shimada, T, Iijima, K, Hasegawa, H, Okawa, K, Fujita, T, Fukumoto, S, Yamashita, T: Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006;444:770774.Google Scholar
Tischler, AS, Powers, JF, Alroy, J: Animal models of pheochromocytoma. Histol Histopathol 2004;19:883895.Google Scholar
Bayley, JP, van Minderhout, I, Hogendoorn, PC, Cornelisse, CJ, van der Wal, A, Prins, FA, Teppema, L, Dahan, A, Devilee, P, Taschner, PE: SDHD and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma. PLOS ONE 2009;4:e7987.Google Scholar
Weismann, D, Briese, J, Niemann, J, Gruneberger, M, Adam, P, Hahner, S, Johanssen, S, Liu, W, Ezzat, S, Saeger, W, Bamberger, AM, Fassnacht, M, Schulte, HM, Asa, SL, Allolio, B, Bamberger, CM: Osteopontin stimulates invasion of NCI-h295 cells but is not associated with survival in adrenocortical carcinoma. J Pathol 2009;218:232240.Google Scholar
Gaujoux, S, Hantel, C, Launay, P, Bonnet, S, Perlemoine, K, Lefevre, L, Guillaud-Bataille, M, Beuschlein, F, Tissier, F, Bertherat, J, Rizk-Rabin, M, Ragazzon, B: Silencing mutated beta-catenin inhibits cell proliferation and stimulates apoptosis in the adrenocortical cancer cell line H295R. PLOS ONE 2013;8:e55743.Google Scholar
Matzuk, MM, Finegold, MJ, Su, JG, Hsueh, AJ, Bradley, A: Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 1992;360:313319.Google Scholar
Rilianawati, Paukku T, Kero, J, Zhang, FP, Rahman, N, Kananen, K, Huhtaniemi, I: Direct luteinizing hormone action triggers adrenocortical tumorigenesis in castrated mice transgenic for the murine inhibin alpha-subunit promoter/simian virus 40 T-antigen fusion gene. Mol Endocrinol 1998;12:801809.Google Scholar
Vuorenoja, S, Rivero-Muller, A, Ziecik, AJ, Huhtaniemi, I, Toppari, J, Rahman, NA: Targeted therapy for adrenocortical tumors in transgenic mice through their LH receptor by Hecate-human chorionic gonadotropin beta conjugate. Endocr Relat Cancer 2008;15:635648.Google Scholar
Berthon, A, Sahut-Barnola, I, Lambert-Langlais, S, de Joussineau, C, Damon-Soubeyrand, C, Louiset, E, Taketo, MM, Tissier, F, Bertherat, J, Lefrancois-Martinez, AM, Martinez, A, Val, P: Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum Mol Genet 2010;19:15611576.Google Scholar
Stovold, R, Meredith, SL, Bryant, JL, Babur, M, Williams, KJ, Dean, EJ, Dive, C, Blackhall, FH, White, A: Neuroendocrine and epithelial phenotypes in small-cell lung cancer: implications for metastasis and survival in patients. Br J Cancer 2013;108:17041711.Google Scholar
Tateno, T, Kato, M, Tani, Y, Yoshimoto, T, Oki, Y, Hirata, Y: Processing of high-molecular-weight form adrenocorticotropin in human adrenocorticotropin-secreting tumor cell line (DMS-79) after transfection of prohormone convertase 1/3 gene. J Endocrinol Invest 2010;33:113117.Google Scholar
Picon, A, Leblond-Francillard, M, Raffin-Sanson, ML, Lenne, F, Bertagna, X, de Keyzer, Y: Functional analysis of the human pro-opiomelanocortin promoter in the small cell lung carcinoma cell line DMS-79. J Mol Endocrinol 1995;15:187194.Google Scholar
Bertagna, XY, Nicholson, WE, Pettengill, OS, Sorenson, GD, Mount, CD, Orth, DN: Ectopic production of high molecular weight calcitonin and corticotropin by human small cell carcinoma cells in tissue culture: evidence for separate precursors. J Clin Endocrinol Metab 1978;47:13901393.Google Scholar
Bertagna, XY, Nicholson, WE, Sorenson, GD, Pettengill, OS, Mount, CD, Orth, DN: Corticotropin, lipotropin, and beta-endorphin production by a human nonpituitary tumor in culture: evidence for a common precursor. Proc Natl Acad Sci USA 1978;75:51605164.Google Scholar
Vieau, D, Seidah, NG, Mbikay, M, Chretien, M, Bertagna, X: Expression of the prohormone convertase PC2 correlates with the presence of corticotropin-like intermediate lobe peptide in human adrenocorticotropin-secreting tumors. J Clin Endocrinol Metab 1994;79:15031506.Google Scholar
Ray, DW, Littlewood, AC, Clark, AJ, Davis, JR, White, A: Human small cell lung cancer cell lines expressing the proopiomelanocortin gene have aberrant glucocorticoid receptor function. J Clin Invest 1994;93:16251630.Google Scholar
Serra, S, Zheng, L, Hassan, M, Phan, AT, Woodhouse, LJ, Yao, JC, Ezzat, S, Asa, SL: The FGFR4–G388R single-nucleotide polymorphism alters pancreatic neuroendocrine tumor progression and response to mTOR inhibition therapy. Cancer Res 2012;72:56835691.Google Scholar
Michiels, FM, Chappuis, S, Caillou, B, Pasini, A, Talbot, M, Monier, R, Lenoir, GM, Feunteun, J, Billaud, M: Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. Proc Natl Acad Sci USA 1997;94:33303335.Google Scholar
Crabtree, JS, Scacheri, PC, Ward, JM, Garrett-Beal, L, Emmert-Buck, MR, Edgemon, KA, Lorang, D, Libutti, SK, Chandrasekharappa, SC, Marx, SJ, Spiegel, AM, Collins, FS: A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA 2001;98:11181123.Google Scholar
Bertolino, P, Tong, WM, Galendo, D, Wang, ZQ, Zhang, CX: Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol Endocrinol 2003;17:18801892.Google Scholar
Harding, B, Lemos, MC, Reed, AA, Walls, GV, Jeyabalan, J, Bowl, MR, Tateossian, H, Sullivan, N, Hough, T, Fraser, WD, Ansorge, O, Cheeseman, MT, Thakker, RV: Multiple endocrine neoplasia type 1 knockout mice develop parathyroid, pancreatic, pituitary and adrenal tumours with hypercalcaemia, hypophosphataemia and hypercorticosteronaemia. Endocr Relat Cancer 2009;16:13131327.Google Scholar
Crabtree, JS, Scacheri, PC, Ward, JM, McNally, SR, Swain, GP, Montagna, C, Hager, JH, Hanahan, D, Edlund, H, Magnuson, MA, Garrett-Beal, L, Burns, AL, Ried, T, Chandrasekharappa, SC, Marx, SJ, Spiegel, AM, Collins, FS: Of mice and MEN1: insulinomas in a conditional mouse knockout. Mol Cell Biol 2003;23:60756085.Google Scholar
Shen, HC, Ylaya, K, Pechhold, K, Wilson, A, Adem, A, Hewitt, SM, Libutti, SK: Multiple endocrine neoplasia type 1 deletion in pancreatic alpha-cells leads to development of insulinomas in mice. Endocrinology 2010;151:40244030.Google Scholar
Libutti, SK, Crabtree, JS, Lorang, D, Burns, AL, Mazzanti, C, Hewitt, SM, O'Connor, S, Ward, JM, Emmert-Buck, MR, Remaley, A, Miller, M, Turner, E, Alexander, HR, Arnold, A, Marx, SJ, Collins, FS, Spiegel, AM: Parathyroid gland-specific deletion of the mouse Men1 gene results in parathyroid neoplasia and hypercalcemic hyperparathyroidism. Cancer Res 2003;63:80228028.Google Scholar
Walls, GV, Lemos, MC, Javid, M, Bazan-Peregrino, M, Jeyabalan, J, Reed, AA, Harding, B, Tyler, DJ, Stuckey, DJ, Piret, S, Christie, PT, Ansorge, O, Clarke, K, Seymour, L, Thakker, RV: MEN1 gene replacement therapy reduces proliferation rates in a mouse model of pituitary adenomas. Cancer Res 2012;72:50605068.Google Scholar
Quinn, TJ, Yuan, Z, Adem, A, Geha, R, Vrikshajanani, C, Koba, W, Fine, E, Hughes, DT, Schmid, HA, Libutti, SK: Pasireotide (SOM230) is effective for the treatment of pancreatic neuroendocrine tumors (PNETs) in a multiple endocrine neoplasia type 1 (MEN1) conditional knockout mouse model. Surgery 2012;152:10681077.Google Scholar
Pellegata, NS, Quintanilla-Martinez, L, Siggelkow, H, Samson, E, Bink, K, Hofler, H, Fend, F, Graw, J, Atkinson, MJ: Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006;103:1555815563.Google Scholar
Suga, H, Kadoshima, T, Minaguchi, M, Ohgushi, M, Soen, M, Nakano, T, Takata, N, Wataya, T, Muguruma, K, Miyoshi, H, Yonemura, S, Oiso, Y, Sasai, Y: Self-formation of functional adenohypophysis in three-dimensional culture. Nature 2011;480:5762.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×