In order to harmonise the communication systems between the train and the railway control centres over the European territory, a GSM-R (Global System for Mobile communications – Railways) communication network is progressively deployed along the European railway network. However, the GSM-R communications on board high speed trains can be disturbed by the transient electromagnetic (EM) disturbances induced by the sliding contact between the catenary and the pantograph. In order to study the immunity of the embedded GSM-R communication system against these transient electromagnetic disturbances, the transient interferences induced on the GSM-R antennas on board trains, were characterised in terms of time and amplitude parameters. Measurement campaigns were carried out in France to collect a large number of induced EM interferences on GSM-R antennas fixed on the train roof. With the ultimate goal of generating transient noise scenarios representative of those detected by the antennas, and performing immunity tests in laboratory, statistical distributions of the characteristics (rise time, time duration, repetition rate, amplitude) of the transients are presented. This paper presents the different steps of the analysis of the transient disturbances and the generation of the transient EM scenarios.