The JKR contact mechanics approach is employed to analyze the effects of surface contaminants on adhesive bonding, as well as quantify the level of contamination at which adhesive strength decreases. The contact adhesive forces between two surfaces, one being a soft hemisphere and the other being a hard plate, can readily be determined by applying an external compressive load to join the two surfaces, subsequently applying a tensile load to assess the energy dissipation mechanisms involved in the debonding process. In the present work, we monitor the interactions between a diglycidyl epoxy elastomer and an aluminum oxide substrate in the presence of an organic contaminant. Furthermore, we present a method by which surface contamination can be quantified using a single number, referred to as the adhesion hysteresis parameter, H.