Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:51:21.505Z Has data issue: false hasContentIssue false

Identification of Pressure-Induced Phase Transformations Using Nanoindentation

Published online by Cambridge University Press:  17 March 2011

Vladislav Domnich
Affiliation:
Department of Mechanical Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607, USA
Yury Gogotsi
Affiliation:
Department of Materials Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
Michael Trenary
Affiliation:
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
Get access

Abstract

A combination of depth-sensing indentation and Raman microspectroscopy has been used for the identification of pressure-induced phase transformations in silicon, germanium, boron carbide and partially stabilized zirconia single crystals. Phase transformations during nanoindentation may be revealed through deviations in the shape of the load-displacement curves from that of a perfect elastoplastic material. Such deviations are often more readily identified if the nanoindentation data are presented as average contact pressure vs. contact depth curves, allowing assessment of the corresponding transformation pressures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gridneva, I. V., Milman, Y. V., and Trefilov, V. I., Phys. Stat. Sol. (a) 9, 177 (1972).Google Scholar
[2] Clarke, D. R., Kroll, M. C., Kirchner, P. D., Cook, R. F., and Hockey, B. J., Phys. Rev. 60, 2156 (1988).Google Scholar
[3] Pharr, G. M., Oliver, W. C., Cook, R. F., Kirchner, P. D., Kroll, M. C., Dinger, T. R., and Clarke, D. R., J. Mater. Res. 7, 961 (1992).Google Scholar
[4] Weppelmann, E. R., Field, J. S., and Swain, M. V., J. Mater. Res. 8, 830 (1993).Google Scholar
[5] Gilman, J. J., Mat. Res. Soc. Symp. Proc. 276, 191 (1992).Google Scholar
[6] Gupta, M. C. and Ruoff, A. L., J. Appl. Phys. 51, 1072 (1980).Google Scholar
[7] Callahan, D. L. and Morris, J. C., J. Mater. Res. 7, 1614 (1992).Google Scholar
[8] Page, T. F., Oliver, W. C., and McHargue, C. J., J. Mater. Res. 7, 450 (1992).Google Scholar
[9] Suzuki, T. and Ohmura, T., Philos. Mag. A 74, 1073 (1996).Google Scholar
[10] Gogotsi, Y. G., Kailer, A., and Nickel, K. G., Materials Research Innovations 1, 3 (1997).Google Scholar
[11] Kailer, A., Gogotsi, Y. G., and Nickel, K. G., J. Appl. Phys. 81, 3057 (1997).Google Scholar
[12] Gogotsi, Y. G., Kailer, A., and Nickel, K. G., J. Appl. Phys. 84, 1299 (1998).Google Scholar
[13] Kailer, A., Nickel, K. G., and Gogotsi, Y. G., J. Raman Spectrosc. 30, 939 (1999).Google Scholar
[14] Mann, A. B., Heerden, D. van, Pethica, J. B., and Weihs, T. P., J. Mater. Res. 15, 1754 (2000).Google Scholar
[15] Bradby, J. E., Williams, J. S., Wong-Leung, J., Swain, M. V., and Munroe, P., Appl. Phys. Lett. 77, 3749 (2000).Google Scholar
[16] Gogotsi, Y. G., Domnich, V., Dub, S. N., Kailer, A., and Nickel, K. G., J. Mater. Res. 15, 871 (2000).Google Scholar
[17] Domnich, V., Gogotsi, Y., and Dub, S., Appl. Phys. Lett. 76, 2214 (2000).Google Scholar
[18] Novikov, N. V., Dub, S. N., Milman, Y. V., Gridneva, I. V., and Chugunova, S. I., Journal of Superhard Materials (Sverkhtverdye Materialy) 18, 32 (1996).Google Scholar
[19] Hu, J. Z., Merkle, L. D., Menoni, C. S., and Spain, I. L., Phys. Rev. B 34, 4679 (1986).Google Scholar
[20] Crain, J., Ackland, G. J., Maclean, J. R., Piltz, R. O., Hatton, P. D., and Pawley, G. S., Phys. Rev. B 50, 13043 (1994).Google Scholar
[21] Piltz, R. O., Maclean, J. R., Clark, S. J., Ackland, G. J., Hatton, P. D., and Crain, J., Phys. Rev. B 52, 4072 (1995).Google Scholar
[22] Pharr, G. M., Mat. Res. Soc. Symp. Proc. 239, 301 (1992).Google Scholar
[23] Olijnyk, H. and Jephcoat, A. P., Phys. Stat. Sol. (b) 211, 413 (1999).Google Scholar
[24] Menoni, C. S., Hu, J. Z., and Spain, I. L., Phys. Rev. B 34, 362 (1986).Google Scholar
[25] Hannink, R. H. J., Kelly, P. M., and Muddle, B. C., J. Am. Ceram. Soc. 83, 461 (2000).Google Scholar
[26] Morell, G., Katiyar, R. S., Torres, D., Paje, S. E., and Llopis, J., J. Appl. Phys. 81, 2830 (1997).Google Scholar
[27] Hoard, J. L. and Hughes, R. E., in The Chemistry of Boron and Its Compounds, edited by Muetterties, E. L. (Wiley, New York, 1967), p. 26.Google Scholar
[28] Nelmes, R. J., Loveday, J. S., Wilson, R. M., Marshall, W. G., Besson, J. M., Klotz, S., Hamel, G., Aselage, T. L., and Hull, S., Phys. Rev. Lett. 74, 2268 (1995).Google Scholar