Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-09T18:13:51.006Z Has data issue: false hasContentIssue false

The Synthesis and Stability of Si1−yQy Alloys and Strained Layer Superlattices

Published online by Cambridge University Press:  22 February 2011

S. S. Iyer
Affiliation:
IBM Research Division, T.J. Watson Research Center Yorktown Heights, NY 10598
K. Eberl
Affiliation:
IBM Research Division, T.J. Watson Research Center Yorktown Heights, NY 10598
M. S. Goorsky
Affiliation:
IBM Research Division, T.J. Watson Research Center Yorktown Heights, NY 10598
F. K. Legoues
Affiliation:
IBM Research Division, T.J. Watson Research Center Yorktown Heights, NY 10598
F. Cardone
Affiliation:
IBM Research Division, T.J. Watson Research Center Yorktown Heights, NY 10598
B. A. Ek
Affiliation:
IBM Research Division, T.J. Watson Research Center Yorktown Heights, NY 10598
Get access

Abstract

We have synthesized Si1−yQy layers and strained layer superlattices on Si (100) with C concentrations of up to a few percent using Solid Source Molecular Beam Epitaxy. The presence of C even in small quantities is known to disrupt the epitaxy of Si. We show that under conditions of high Si flux for a given C/Si flux ratio, defect-free epitaxy results. However, exceeding a critical C/Si flux ratio leads to disruption of epitaxy, initially via twinning and subsequently by amorphous growth. Growth temperature also plays a significant role in preventing twinning and islanding. Low growth temperature also suppresses the precipitation of β-SiC and leads to the formation of pseudomorphic Si1−yQy random alloys. The layers are characterized by X-ray diffraction, Secondary Ion Mass spectroscopy, and Transmission Electron Microscopy. We have also studied the thermal stability of strained layer superlattices and find that the layers are stable to about 800°C (for y = 0.003). Between 800°C and 1000°C, the layers relax by interdiffusion. Above 1000°C, silicon carbide precipitation occurs and the carbide layers nucleate and grow at high C content regions of the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iyer, S. S., Patton, G. L., Stork, J. M. C., Meyerson, B. S., and Harame, D. L., “Heterojunction Bipolar Transistors using Si-Ge alloys,” IEEE Trans. Electron. Dev. 36, 20432064 (1989).CrossRefGoogle Scholar
2 Wright, S.L., Kroerner, H., and Inada, M., “Molecular beam epitaxial growth of GaP on Si,” J. Appl. Phys. 55, 29162927 (1984).Google Scholar
3 Kwark, Y. H. and Swanson, R. M., “N-type SIPOS and poly-silicon emitters,” Solid-State Electronics 30, 11211125 (1987).CrossRefGoogle Scholar
4 Matsushita, T., Hayashi, H., Oh-Uchi, N., and Yamoto, H., “A SIPOS-Si heterojunction transistor,” Jap. J. Appl. Phys. (suppl.) 20, 7581 (1980).CrossRefGoogle Scholar
5 Yablonovitch, E. and Gmitter, T., “A study of n+ -SIPOS:p-Si heterojunction emit ters,” IEEE Electron Device Lett. EDL-6, 597599 (1985).CrossRefGoogle Scholar
6 Takahashi, M., Tabe, M., and Sakakibara, Y., “IV characteristics of oxygen-doped Si epitaxial film (OXSEF)/Si heterojunctions,” IEEE Electron Device Lett. EDL-8, 475476 (1987).CrossRefGoogle Scholar
7 Sugii, T., Ito, T., Furumura, Y., Doki, M., Mieno, F., and Maeda, M., “β-SiC/Si heterojunction bipolar transistors with high current gain,” IEEE Electron Device Lett. 9, 8789 (1988).CrossRefGoogle Scholar
8 Sasaki, K., Fukazawa, T., and Furukawa, S., “Micro-crystalline hetero-emitter with high efficiency for Si HBT,” in IEDM Tech. Dig. 1987, 186189 (1987).Google Scholar
9 Symons, J., Ghannam, M., Neugroschel, A., Nijs, J., and Mertens, R., “Silicon heterojunction bipolar transistors with amorphous and microcrystalline emitters,” Solid-State Electronics 30, 11431145 (1987).CrossRefGoogle Scholar
10 Fujioka, H., Deguchi, T., Takasaki, K., and Takada, T., “An ECL gate array with Si HBTs,” in IEDM Tech. Dig. 1987, 574577 (1988).Google Scholar
11 Posthill, J. B., Rudder, R. A., Hattangady, S. V., Fountain, G. G., and Markunas, R. J., “On the feasability of growing dilute Si1−yCy epitaxial alloys,” Appl. Phys. Lett. 56 (8), 734736 (1990).CrossRefGoogle Scholar
12 Sugii, T., Aoyama, T., and Ito, T., “Low-Temperature Growth of β-SiC by Gas- Source MBE,” J. Electrochem. Soc. 137, 989992 (1990).CrossRefGoogle Scholar
13 Malik, R. J., Nothenberg, R. N., Schubert, E. F., walker, J. F., and Ryan, R.W., “Carbon Doping in MBE of GaAs from a heated graphite filament,” Appl. Phys. Lett. 53, 26612663 (1988).CrossRefGoogle Scholar
14 Abbink, H. C., Broudy, R. M., and McCarthy, G. P., “Surface processes in the growth of Silicon on (111) silicon in Ultrahigh Vacuum,” J. Appl. Phys. 39, 46734681 (1968).CrossRefGoogle Scholar