Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-15T13:40:41.387Z Has data issue: false hasContentIssue false

Pulsed DC Reactive Magnetron Sputtering of AlN Thin Films on High Frequency LTCC Substrates

Published online by Cambridge University Press:  01 February 2011

Jung W. Lee
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Jerome J. Cuomo
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Baxter F. Moody
Affiliation:
Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Yong S. Cho
Affiliation:
DuPont Electronic Technologies, Research Triangle Park, NC 27709, USA
Roupen L. Keusseyan
Affiliation:
DuPont Electronic Technologies, Research Triangle Park, NC 27709, USA
Get access

Abstract

This preliminary work reports the preparation of AlN thin films on an LTCC (low temperature co-fired ceramics) substrate by pulsed dc reactive magnetron sputtering and the limited characterization focusing on microstructure and crystal orientation. The main focus will be placed on the effects of changing pulsed frequency. The AlN thin film showed good adhesion with the substrate and columnar structures having small grains regardless of pulsed frequency. The crystal orientation of AlN thin films was dependent on pulsed frequency according to the result of XRD patterns. The preferred (002) orientation was obtained at a pulsed frequency of 100 kHz. The broad band of 300 to 650 nm observed in photoluminescence spectrum was believed due to defects associated with the presence of oxygen impurities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gongora-Rubio, M. R., Espinoza-Vallejos, P., Solar-Laguna, L. and Santiago-Aviles, J. J., Sensor Actua. A 89, 222 (2001).Google Scholar
2. Dernovsek, O., Naeini, A., Preu, G., Wersing, W., Eberstein, M. and Schiller, W. A., J. Euro. Ceram. Soc., 21, 1693 (2001).Google Scholar
3. Thelemann, T., Thust, H. and Hintz, M., Microelectonics International, 19, 19 (2002).Google Scholar
4. Morkoc, H., Nitride semiconductors and devices, Materials Science (Berlin, New York) springer (1999).Google Scholar
5. Lambropoulos, J. C., Jacobs, S. D., Burns, S. J., Shaw-Klein, L. and Hwang, S. -S., HTD-Vol. 184, Thin Film Heat Transfer: Properties and Processing ASME, 21 (1991).Google Scholar
6. Lambropoulos, J. C., Jacobs, S. D., Burns, S. J. and Shaw-Klein, L., HTD-Vol. 227, Fundamental Issues in Small Heat Transfer ASME, 37 (1992).Google Scholar
7. Kuo, P. K., Auner, G. W. and Wu, Z.L, Thin Solid Films, 253, 223 (1994).Google Scholar
8. Slack, G. A. and Tanzilli, R. A., J. Phys. Chem. Solids, 48, 641 (1987).Google Scholar
9. Hurokawa, Y., Utsumi, K. and Takamizawa, H., J. Am. Ceram. Soc., 71, 588 (1988).Google Scholar
10. Gorzawski, G., Sternitzke, M., Müller, W. F., Berger, A. and Müller, G., J. Euro. Ceram. Soc. 15, 95 (1995).Google Scholar
11. Ohuchi, F. S. and French, R. H., J. Vac. Sci. Technol. A 6, 1695 (1988).Google Scholar
12. Sun, J., Wu, J., Ling, H., Shi, W., Ying, Z. and Li, F., Phys. Lett. A 280 381 (2001).Google Scholar
13. Harris, J. H., Youngman, R. A. and Teller, R, G, J. Mater. Res., 5 1763 (1990).Google Scholar