Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T14:53:57.661Z Has data issue: false hasContentIssue false

Low Temperature Plasma Synthesis of Nanocrystals and their Application to the Growth of Crystalline Silicon and Germanium Thin Films

Published online by Cambridge University Press:  07 June 2012

P. Roca i Cabarrocas
Affiliation:
LPICM, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
K.H. Kim
Affiliation:
LPICM, CNRS, Ecole Polytechnique, 91128 Palaiseau, France Total S.A., Gas & Power – R&D Division, Courbevoie, France
R. Cariou
Affiliation:
LPICM, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
M. Labrune
Affiliation:
LPICM, CNRS, Ecole Polytechnique, 91128 Palaiseau, France Total S.A., Gas & Power – R&D Division, Courbevoie, France
E.V. Johnson
Affiliation:
LPICM, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
M. Moreno
Affiliation:
LPICM, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
A. Torres Rios
Affiliation:
LPICM, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
S. Abolmasov
Affiliation:
LPICM, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
S. Kasouit
Affiliation:
LPICM, CNRS, Ecole Polytechnique, 91128 Palaiseau, France Total S.A., Gas & Power – R&D Division, Courbevoie, France
Get access

Abstract

We summarize our research studies on the synthesis of silicon and germanium nanocrystals and their application to the growth of a variety of thin films, spanning the range from fully disordered amorphous up to fully ordered crystalline. All these films are deposited in a standard radio-frequency glow discharge system at low temperature (~200 °C). We show how the plasma synthesis of silicon nanocrystals, initially a side effect of powder formation, has become over the years an exciting field of research which has opened the way to new opportunities in the field of materials deposition and their application to optoelectronic devices. Our results suggest that epitaxy requires the melting/amorphization of the nanocrystals upon impact on the substrate, the subsequent epitaxial growth being favored on (100) c-Si substrates. As a consequence, the control of the impact energy is a critical aspect of the growth which will require new strategies such as the use of tailored voltage waveforms.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wagner, S., Phys. Status Solidi A 207, 501 (2010).CrossRefGoogle Scholar
Matsuda, A., Nomoto, K., Takeuchi, Y., Suzuki, A., Yuuki, A., and Perrin, J., Surf. Sci. 227, 50 (1990).CrossRefGoogle Scholar
Kessels, W. M. M., Smets, A. H. M., Marra, D. C., Aydil, E. S., Schram, D. C., and van de Sanden, M. C. M., Thin Solid Films 383, 154 (2001).CrossRefGoogle Scholar
Plasmas, Dusty: Physics, Chemistry, and Technological Impacts in Plasma Processing. Wiley, New York (1999), A. Bouchole editor.Google Scholar
Roca i Cabarrocas, P., Djeridane, Y., Nguyen Tran, Th., Johnson, E.V., Abramov, A., and Zhang, Q.. Plasma Phys. Control. Fusion 50, 124037 (2008).CrossRefGoogle Scholar
Watanabe, Y., Shiratani, M., Fukuzawa, T., Kawasaki, H., Ueda, Y., Singh, S., and Ohkura, H.. J. Vac. Sci. Technol. A 15, 995 (1996).CrossRefGoogle Scholar
Ifuku, T., Otobe, M., Itoh, A., and Oda, S.. Jpn. J. Appl. Phys. 36, 4031 (1997).CrossRefGoogle Scholar
Mangolini, L., Thimsen, E., and Kortshagen, U.. Nano Letters, 5, 655 (2005).CrossRefGoogle Scholar
Sankaran, R. M., Holunga, D., Flagan, R. C., and Giapis, K. P.. Nano Letters, 5, 537 (2005).CrossRefGoogle Scholar
Roca i Cabarrocas, P., Hamma, S., Sharma, S.N., Costa, J., and Bertran, E.. J. Non Cryst. Solids 227230, 871 (1998).CrossRefGoogle Scholar
Longeaud, C., Kleider, J.P., Roca i Cabarrocas, P., Hamma, S., Meaudre, R., and Meaudre, M.. J. Non Cryst. Solids 227230, 96 (1998).CrossRefGoogle Scholar
Roca i Cabarrocas, P., Fontcuberta i Morral, A., and Poissant, Y.. Thin Solid Films Vol. 403404, 39 (2002).CrossRefGoogle Scholar
Poissant, Y., Chatterjee, P., and Roca i Cabarrocas, P.. J. Appl. Phys. 94, 7305 (2003).CrossRefGoogle Scholar
Oudwan, M., Moustapha, O., Abramov, A., Daineka, D., Bonnassieux, Y., and Roca i Cabarrocas, P.. Phys. Stat. Solidi A 207, 1245 (2009).CrossRefGoogle Scholar
Djeridane, Y., Abramov, A., and Roca i Cabarrocas, P.. Thin Solid Films 515, 7451 (2007).CrossRefGoogle Scholar
Johnson, E.V., Patriarche, G., and Roca i Cabarrocas, P.. Appl. Phys. Lett. 92, 103108 (2008).CrossRefGoogle Scholar
Roca i Cabarrocas, P., Chévrier, J.B., Huc, J., Lloret, A., Parey, J.Y., and Schmitt, J.P.M.. J. of Vac. Sci.. and Technol. A 9, 2331 (1991).CrossRefGoogle Scholar
Roca i Cabarrocas, P., Morin, P., Chu, V., Conde, J., Liu, J.Z., Park, H.R., and Wagner, S.. J. Appl. Phys. 69, 2942 (1991).CrossRefGoogle Scholar
Kalache, B., Kosarev, A.I., Vanderhaghen, R., and Roca i Cabarrocas, P.. J. Appl. Phys. 93, 1262 (2003).CrossRefGoogle Scholar
Roca i Cabarrocas, P., Nguyen-Tran, Th, Djeridane, Y., Abramov, A., Johnson, E. and Patriarche, G.. J. Phys. D: Appl. Phys. 40, 2258 (2007).CrossRefGoogle Scholar
Fridman, A., Boufendi, L., Hbid, T., Potapkin, B., and Bouchoule, A., J. Appl. Phys. 79, 1303 (1995).CrossRefGoogle Scholar
Böhm, Ch. and Perrin, J.. J. Phys. D: Appl. Phys. 24, 865 (1991).CrossRefGoogle Scholar
Nguyen-Tran, Th., Roca i Cabarrocas, P. and Patriarche, G.. Appl. Phys. Lett. 91, 111501 (2007).CrossRefGoogle Scholar
Cheng, Kai-Yuan, Anthony, R., Kortshagen, U. R., Holmes, R.J.. NanoLetters 10, 1154 (2010).CrossRefGoogle Scholar
Wang, J., Suendo, V., Abramov, A., Yu, L., and Roca i Cabarrocas, P.. Appl. Phys. Lett. 97, 221113 (2010).CrossRefGoogle Scholar
Soro, Y. M., Abramov, A., Guenier-Farret, M.E., Johnson, E.V., Longeaud, C., Roca i Cabarrocas, P., and Kleider, J.P.. J. Non Cryst. Solids 354, 2092 (2008).CrossRefGoogle Scholar
Roca i Cabarrocas, P., chapter 5 in Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Edited by van Sark, W. G. J. H. M., Korte, L., Roca, F.. Springer (2011).Google Scholar
Roca i Cabarrocas, P., Djeridane, Y., Bui, V.D., Bonnassieux, Y. and Abramov, A.. Solid State Electronics 52, 422 (2008).CrossRefGoogle Scholar
De Wolf, S. and Kondo, M.. Appl. Phys. Letters 90, 042111 (2007).CrossRefGoogle Scholar
Hekmatshoar, B., Shahrjerdi, D., and Sadana, D.K., in Electron Devices Meeting (IEDM), 2011 IEEE International (2011), pp. 36.6.1 –11.Google Scholar
Teplin, Ch. W., Alberi, K., Shub, M., Beall, C., Martin, I. T., Romero, M. J., Young, D. L., Reedy, R. C., Stradins, P., and Branz, H. M.. Appl. Phys. Lett. 96, 201901 (2010).CrossRefGoogle Scholar
Teplin, C.W., Levi, D.H., Iwaniczko, E., Jones, K.M., Perkins, J.D., and Branz, H.M., J. Appl. Phys. 97, 103536 (2005).CrossRefGoogle Scholar
Roca i Cabarrocas, P., Cariou, R. and Labrune, M.. J. Non Cryst. Solids (2012). In press doi:10.1016/j.jnoncrysol.2011.12.113.Google Scholar
Labrune, M., Bril, X., Patriarche, G., Largeau, L., Maugin, O. and Roca i Cabarrocas, P.. EPJ Photovoltaics (submitted).Google Scholar
Cariou, R., Labrune, M. and Roca i Cabarrocas, P.. Solar Energy Materials and Solar Cells. 95, 2260 (2011).CrossRefGoogle Scholar
Chaâbane, N., Suendo, V., Vach, H., and Roca i Cabarrocas, P.. Appl. Phys. Lett. 88, 203111 (2006).CrossRefGoogle Scholar
Ning, Ning and Vach, H.. J. Phys. Chem. A. 114, 3297 (2010).CrossRefGoogle Scholar
Hamers, E. A. G., Foncuberta, A., Niikura, C., Brenot, R., and Roca i Cabarrocas, P.. J. Appl. Phys., 88, 3674 (2000).CrossRefGoogle Scholar
Johnson, E.V., Pouliquen, S., Delattre, P.A., and Booth, J.P., Plasma Assisted Materials Processing and Synthesis - 2011 (Mater. Res. Soc. Symp. Proc., San Francisco, April) S4.5.Google Scholar
Johnson, E.V., Delattre, P-A., and Booth, J.P., Appl. Phys. Lett. 100, 133504 (2012).CrossRefGoogle Scholar
Fontcuberta i Morral, A., Roca i Cabarrocas, P. and Clerc, C.. Phys. Rev. B 69, 125307 (2004).CrossRefGoogle Scholar
Takagi, T., Thin Solid Films 92, 1 (1982).CrossRefGoogle Scholar
Biswas, R., Grest, G. S., and Soukoulis, C.M.. Phys. Rev. B 38, 8154 (1988).CrossRefGoogle Scholar
Csepregi, L., Kennedy, E.F., and Mayer, J.W., J. Appl. Phys. 49, 3906 (1978).CrossRefGoogle Scholar
Vach, H., Brulin, Q., Phys. Rev. Lett., 95, 165502 (2005).CrossRefGoogle Scholar