Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-12T08:47:43.319Z Has data issue: false hasContentIssue false

Investigation of Surface Ion Failure Mechanisms by Corona Discharge

Published online by Cambridge University Press:  15 February 2011

Robert B. Comizzoli*
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

In this paper, the use of corona discharges to investigate and monitor surface ion failure mechanisms in devices is reviewed. The physical mechanisms resulting in surface ioninduced failures are first described. Then, some of the traditional design features and testing methods to minimize these failures are summarized. After presenting the general features of surface charge deposition on devices by a corona discharge, several examples of the application of this technique for design verification, process improvement and control, and failure analysis are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Atalla, M. M., Bray, A. R., and Lindner, R., Proc. IEE, 106, 1130 (1959).Google Scholar
2. Shockley, W., Queisser, H. J., and Hooper, W. W., Phys. Rev. Lett., 11, 489 (1963).Google Scholar
3. Shockley, W., Hooper, W. W., Queisser, H. J., and Schroen, W., Surf. Sci., 2, 277 (1964).Google Scholar
4. Metz, E. D., Phys. Failure Electron, 2, 163 (1964).Google Scholar
5. Schnable, G. L., Schlegel, E. S., and Keen, R. S., Phys. Failure Electron, 3, 108 (1965).Google Scholar
6. Schlegel, E. S., Schnable, G. L., Schwarz, R. F., and Spratt, J. P., IEEE Trans. Electron Devices, ED–15, 973 (1968).Google Scholar
7. Schlegel, E. L. and Schnable, G. L., Phys. Failure Electron, ED–16, 386 (1969).Google Scholar
8. Schlegel, E. S., Keen, R. S., and Schnable, G. L., in “8th Annual Proceedings of the International Reliability Physics Symposium,” p. 9, IEEE, New York (1971).Google Scholar
9. Schroen, W., in “11th Annual Proceedings of the International Reliability Physics Symposium,” p. 117, IEEE, New York (1973).Google Scholar
10. Brown, G. A., Lovelace, K., and Hutchins, C., in “11th Annual Proceedings of the International Reliability Physics Symposium,” p. 203, IEEE, New York (1973).Google Scholar
11. Potter, H. C. and Reber, D. R., in “14th Annual Proceedings of the International Reliability Physics Symposium,” p. 11, IEEE, New York (1976).Google Scholar
12. Comizzoli, R. B., J. Electrochem. Soc., 134, 424 (1987).Google Scholar
13. Comizzoli, R. B. and Osenbach, J. W., J. Electrochem. Soc., 135, 1517 (1988).Google Scholar
14. Comizzoli, R. B., J. Electrochem. Soc., Extended Abstracts 90–2, Oct. 1990, Abstract 303.Google Scholar
15. Comizzoli, R. B., J. Electrochem. Soc., 124, 1087 (1977).Google Scholar