Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:00:08.006Z Has data issue: false hasContentIssue false

Growth and Characterization of GaN on Si(111)

Published online by Cambridge University Press:  21 February 2011

A. Ohtani
Affiliation:
Division of Engineering and Center for Advanced Materials Research, Brown University, Providence, RI 02912, USA
K. S. Stevens
Affiliation:
Division of Engineering and Center for Advanced Materials Research, Brown University, Providence, RI 02912, USA
R. Beresford
Affiliation:
Division of Engineering and Center for Advanced Materials Research, Brown University, Providence, RI 02912, USA
Get access

Abstract

Wurtzite GaN films on AlN buffer layers were grown on Si (111) by electron cyclotron resonance microwave plasma assisted MBE (ECR-MBE). High resolution x-ray diffraction studies indicate that the mosaic disorder decreases with increasing growth temperature. The grain size is related to the growth temperature. The best (0002) diffraction peak full width at half maximum was 22 min. for a film 1.7 μm thick. Prominent exciton luminescence is observed at 3.46 eV at 10 K.

The plasma I-V characteristics were measured with a Langmuir probe near the growth position. The nitrogen ion density has been extracted from the data, and is a strong function of the N2 flow rate, the microwave power and the aperture size of the ECR source. The crystal quality of AlN is strongly affected by the plasma conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFFERENCES

1. Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. 30, L1998 (1991).Google Scholar
2. Koide, N., Kato, H., Sussa, M., and Manabe, K., J. Cryst. Growth. 115, 639 (1991).Google Scholar
3. Stevens, K.S., Ohtani, A., Schwartzman, A.F., and Beresford, R., J. Vac. Sci. Technol. B (to appear Mar/Apr 1994).Google Scholar
4. Takeuchi, T., Amano, H., Hiramatsu, K., Sawaki, N., and Akasaki, I., J. Cryst. Growth. 115, 634 (1991).Google Scholar
5. Lei, T. and Moustakas, T.D., J. Appl. Phys. 71, 4933 (1992).Google Scholar
6. Sitar, Z., Paisley, M.J., Yan, B., and Davis, R.F., Mater. Res. Soc. Symp. Proc. 162, 537 (1990).Google Scholar
7. Itoh, N. and Okamoto, K., J. Appl. Phys. 63, 1486 (1988).Google Scholar
8. Koide, Y., Itoh, N., Itoh, K., Sawaki, N., and Akasaki, I., Jpn. J. Appl. Phys. 27, 1156 (1988).Google Scholar
9. Scherrer, P., Göttinger Nachr. 2, 98 (1918).Google Scholar
10. Patterson, A. L., Z. Kirst. 66, 637 (1928).Google Scholar
11. Jones, F.W., Proc. Roy. Soc. A 166, 16 (1938).Google Scholar
12. Bragg, W.L., The Crystalline State, Vol. I. A General Survey, Bell, G. and Sons, London, Vol.1, 189.(1919).Google Scholar
13. Grimmiss, H.G. and Mnemar, B., J. Appl. Phys. 41, 4054 (1970).Google Scholar
14. Ilegems, M., Dingle, R., and Logan, R.A., J. Appl. Phys. 43, 3797 (1971).Google Scholar
15. Dingle, R., Sell, D.D., Stokowski, S.E., and Ilegems, M., Phys. Rev. B. 4, 1211 (1971).Google Scholar
16. Powell, R.C., Lee, N.E., Kim, Y.W., and Greene, J.E., J. Appl. Phys. 73, 189 (1993).Google Scholar
17. Mott-Smith, H. M. and Langmuir, I., Phys. Rev. 28, 727 (1926).Google Scholar