Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-20T02:16:25.620Z Has data issue: false hasContentIssue false

Raman investigation of the air stability of 2H polytype HfSe2 thin films

Published online by Cambridge University Press:  06 September 2018

Antonio Cruz
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92507, USA
Zafer Mutlu
Affiliation:
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
Mihrimah Ozkan
Affiliation:
Department of Electrical and Computer Engineering, University of California, Riverside, CA 92507, USA
Cengiz S. Ozkan*
Affiliation:
Materials Science and Engineering Program, University of California, Riverside, CA 92507, USA Department of Mechanical Engineering, University of California, Riverside, CA 92507, USA
*
Address all correspondence to Cengiz S. Ozkan at [email protected]
Get access

Abstract

Hafnium diselenide (HfSe2) has a high theoretical carrier mobility but is among the most reactive transition-metal dichalcogenides (TMDs). Herein, we have investigated the air stability of 2H polytype HfSe2 single-crystal thin films by spectroscopic and microscopic techniques. Raman spectroscopy measurements in conjunction with atomic force microscopy reveal the formation of selenium-rich blisters on the surface of the crystals upon air exposure. Transmission electron microscopy analysis indicates that 2H-HfSe2 undergoes a spontaneous phase change to 1T-HfSe2. These results offer Raman spectroscopy as a fast, convenient, non-destructive technique to reliably monitor the surface degradation of TMDs and present an opportunity for further study of phase changes in this material.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work performed during postdoctoral studies at the University of California, Riverside.

References

1.Yin, L., Xu, K., Wen, Y., Wang, Z., Huang, Y., Wang, F., Shifa, T.A., Cheng, R., Ma, H., and He, J.: Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 109, 213105 (2016).Google Scholar
2.Yue, R., Barton, A.T., Zhu, H., Azcatl, A., Pena, L.F., Wang, J., Peng, X., Lu, N., Cheng, L., Addou, R., McDonnell, S., Colombo, L., Hsu, J.W.P., Kim, J., Kim, M.J., Wallace, R.M., and Hinkle, C.: HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9, 474480 (2015).Google Scholar
3.Greenaway, D.L. and Nitsche, R.: Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Sol. 26, 14451458 (1965).Google Scholar
4.Cingolani, A., Lugara, M., and Levy, F.: Resonance Raman scattering in HfSe2 and HfS2. Phys. Scr. 37, 389391 (1988).Google Scholar
5.Wieting, T.J. and Verble, J.L.: Infrared and Raman Investigations of Long-Wavelength Phonons in Layered Materials, in Electrons and Phonons in Layered Crystal Structures (D. Reidel Publishing Company, Dordrecht, 1979), pp. 324344.Google Scholar
6.Rasmussen, F.A. and Thygesen, K.S.: Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 1316913183 (2015).Google Scholar
7.Zhang, W., Huang, Z., Zhang, W., and Li, Y.: Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 17311737 (2104).Google Scholar
8.Najmaei, S., Neupane, M.R., Nichols, B.M., Burke, R.A., Mazzoni, A.L., Chin, M.L., Rhodes, D.A., Balicas, L., Franklin, A.D., and Dubey, M.: Cross-plane carrier transport in van der Waals layered materials. Small 14, 1703808 (2018).Google Scholar
9.Mirabelli, G., McGeough, C., Schmidt, M., McCarthy, E.K., Monaghan, S., Povey, I.M., McCarthy, M., Gity, F., Nagle, R., Hughes, G., Cafolla, A., Hurley, P.K., and Duffy, R.: Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. J. Appl. Phys. 120, 125102 (2016).Google Scholar
10.George, A.S., Mutlu, Z., Ionescu, R., Wu, R.J., Jeong, J.S., Bay, H.H., Chai, Y., Mkhoyan, K.A., Ozkan, M., and Ozkan, C.S.: Wafer scale synthesis and high resolution structural characterization of atomically thin MoS2 layers. Adv. Funct. Matter 24, 74617466 (2014).Google Scholar
11.Mutlu, Z., Wu, R.J., Wickramaratne, D., Shahrezaei, S., Chueh, L., Temiz, S., Patalano, A., Ozkan, M., Lake, R.K., Mkhoyan, K.A., and Ozkan, C.S.: Phase engineering of 2D tin sulfides. Small 22, 12 (2016).Google Scholar
12.Zhang, X., Qiao, X.-F., Shi, W., Wu, J.-B., Jiang, D.-S., and Tan, P.-H.: Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 27572785 (2015).Google Scholar
13.Samadi, M., Sarikhani, N., Zirak, M., Zhang, H., Zhang, H.-L., and Moshfegh, A.Z.: Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horiz. 3, 90204 (2017).Google Scholar
14.Ribeiro-Soares, J., Almeida, R.M., Barros, E.B., Araujo, P.T., Dresselhaus, M.S., Cancado, L.G., and Jorio, A.: Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys. Rev. B 90, 115438 (2014).Google Scholar
15.Kim, J.S., Kim, J., Zhao, J., Kim, S., Lee, J.H., Jin, Y., Choi, H., Moon, B.H., Bae, J.J., Lee, Y.H., and Lim, S.C.: Electrical transport properties of polymorphic MoS2. ACS Nano 10, 75007506 (2016).Google Scholar
16.Ataca, C., Sahin, H., and Ciraci, S.: Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 89838999 (2012).Google Scholar
17.Gong, C., Zhang, H., Wang, W., Colombo, L., Wallace, R.M., and Cho, K.: Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).Google Scholar
18.Semiconductors: Large size high quality flux zone grown vdW HfSe2 crystals (2018). Available at: http://www.2dsemiconductors.com/hafnium-diselenide-hfse2/ (Accessed April 10, 2018).Google Scholar
19.Li, H., Wu, J., Huang, X., Lu, G., Yang, J., Lu, X., Xiong, Q., and Zhang, H.: Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 1034410353 (2013).Google Scholar
20.Yumnam, G., Pandey, T., and Singh, A.K.: High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: a first principles study. J. Chem. Phys. 143, 234704–8 (2015).Google Scholar
21.Nagata, K., Ishibashi, K., and Miyamoto, Y.: Raman and infrared spectra of rhombohedral selenium. Japanese J. Appl. Phys. 20, 463469 (1981).Google Scholar
22.Song, S., Keum, D.H., Cho, S., Perello, D., Kim, Y., and Lee, Y.H.: Room temperature semiconductor – metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188193 (2016).Google Scholar
Supplementary material: File

Cruz et al. supplementary material

Figures S1-S2 and Tables S1

Download Cruz et al. supplementary material(File)
File 2.7 MB