Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T10:28:50.400Z Has data issue: false hasContentIssue false

Influence of electrolyte substrates on the Sr-segregation and SrSO4 formation in La0.6Sr0.4Co0.2Fe0.8O3–δ thin films

Published online by Cambridge University Press:  17 October 2018

Jeffrey C. De Vero*
Affiliation:
Energy Conversion Technology Group, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
Harumi Yokokawa
Affiliation:
Energy Conversion Technology Group, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
Katherine Develos-Bagarinao
Affiliation:
Energy Conversion Technology Group, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
Shu-Sheng Liu
Affiliation:
Energy Conversion Technology Group, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
Haruo Kishimoto
Affiliation:
Energy Conversion Technology Group, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
Tomohiro Ishiyama
Affiliation:
Energy Conversion Technology Group, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
Katsuhiko Yamaji
Affiliation:
Energy Conversion Technology Group, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
Teruhisa Horita
Affiliation:
Energy Conversion Technology Group, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
*
Address all correspondence to Jeffrey C. De Vero at [email protected]
Get access

Abstract

To systematically investigate the influence of electrolyte substrates on Sr-segregation and SrSO4 formation in (LaSr)(CoFe)O3 (LSCF) cathodes in solid oxide fuel cells, model thin films were grown on Gd-doped ceria (GDC) and on Y-doped BaZrO3 (BZY) electrolytes by pulsed laser deposition and heat treated at 800–1000 °C in synthetic air with a trace amount of SO2. A severe SrSO4 formation was observed in LSCF on GDC as compared with the BZY, especially at low temperature. The difference in Sr-segregation and SrSO4 formation on the LSCF was discussed in relation to Sr diffusion and related elemental redistribution across the interfaces.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yokokawa, H., Hori, Y., Shigehisa, T., Suzuki, M., Inoue, S., Suto, T., Tomida, K., Shimazu, M., Kawakami, A., Sumi, H., Ohmori, M., Mori, N., Iha, T., Yamaji, K., Kishimoto, H., Develos-Bagarinao, K., Sasaki, K., Taniguchi, S., Kawada, T., Muramatsu, M., Terada, K., Eguchi, K., Matsui, T., Iwai, H., Kishimoto, M., Shikazono, N., Mugikura, Y., Yamamoto, T., Yoshikawa, M., Yasumoto, K., Asano, K., Matsuzaki, Y., Amaha, S., and Somekawa, T.: Recent achievements of NEDO durability project with an emphasis on correlation between cathode overpotential and ohmic loss. Fuel Cells 17, 473 (2017).Google Scholar
2.Yokokawa, H., Tu, H., Iwanschitz, B., and Mai, A.: Fundamental mechanisms limiting solid oxide fuel cell durability. J. Power Sources 182, 400 (2008).Google Scholar
3.Wang, F., Yamaji, K., Cho, D., Shimonosono, T., Kishimoto, H., Brito, M.E., Horita, T., and Yokokawa, H.: Effect of strontium concentration on sulfur poisoning of LSCF cathodes. Solid State Ionics 225, 157 (2012).Google Scholar
4.Wang, F., Yamaji, K., Cho, D., Shimonoso, T., Kishimoto, H., Brito, M., Horita, T., and Yokokawa, H.: Sulfur poisoning on La0.6Sr0.4Co0.2Fe0.8O3 cathode for SOFCs. J. Electrochem. Soc. 158, B1391 (2011).Google Scholar
5.Wang, F., Yamaji, K., Cho, D.H., Shimonosono, T., Nishi, M., Kishimoto, H., Brito, M.E., Horita, T., and Yokokawa, H.: Evaluation of sulfur dioxide poisoning for LSCF cathodes. Fuel Cells 13, 520 (2013).Google Scholar
6.Liu, R., Taniguchi, S., Shiratori, Y., Ito, K., and Sasaki, S.: Influence of SO2 on the long-term durability of SOFC cathodes. ECS Trans. 35, 2255 (2011).Google Scholar
7.Sakai, N., Horita, T., Yamaji, K., Brito, M., Yokokawa, H., Kawakami, A., Matsuoka, S., Watanabe, N., and Ueno, A.: Interface stability among solid oxide fuel cell materials with perovskite structures. J. Electrochem. Soc. 153, A621 (2006).Google Scholar
8.Izuki, M., Brito, M.E., Yamaji, K., Kishimoto, H., Cho, D.H., Shimonosono, T., Horita, T., and Yokokawa, H.: Interfacial stability and cation diffusion across the LSCF/GDC interface. J. Power Sources 196, 7232 (2014).Google Scholar
9.De Vero, J.C., Develos-Bagarinao, K., Kishimoto, H., Ishiyama, T., Yamaji, K., Horita, T., and Yokokawa, H.: Influence of La0.6Sr0.4Co0.2Fe0.8O3–δ microstructure on GDC interlayer stability and cation diffusion across the LSCF/GDC/YSZ interfaces. J. Electrochem. Soc. 163, F1463 (2016).Google Scholar
10.De Vero, J.C., Develos-Bagarinao, K., Kishimoto, H., Ishiyama, T., Yamaji, K., Horita, T., and Yokokawa, H.: Enhanced stability of solid oxide fuel cells by employing a modified cathode–interlayer interface with a dense La0.6Sr0.4Co0.2Fe0.8O3−δ thin film. J. Power Sources 377, 128 (2018).Google Scholar
11.Develos-Bagarinao, K., Yokokawa, H., Kishimoto, H., Ishiyama, T., Yamaji, K., and Horita, T.: Elucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)O3/YSZ interfaces. J. Mater. Chem. A 5, 8733 (2017).Google Scholar
12.Iwahara, H., Yahia, T., and Hibino, T.: Protonic conduction in calcium, strontium, and barium zirconates. Solid State Ionics 61, 65 (1993).Google Scholar
13.Oyama, S., and Yamaguchi, S.: Phase relation in the BaO-ZrO2-YO1.5 system: preparation of separate BaZrO3 phases and complexity in phase formation. Solid State Ionics 197, 1 (2011).Google Scholar
14.Babilo, P., Uda, T., and Haile, S.: Processing of yttrium-doped barium zirconate for high proton conductivity. J. Mater. Res. 22, 132 (2007).Google Scholar
15.Ten Elshof, J., and Boejisma, J.: Influence of iron content on cell parameters of rhombohedral La0.6Sr0.4Co1–yFeyO3. Powder Diffr. 11, 240 (1996).Google Scholar
16.Chaudhari, P.: Grain growth and stress relief in thin films. J. Vac. Sci. Technol. 9, 520 (1972).Google Scholar
17.Sasaki, T., Matsunaga, K., Ohta, H., Hosono, H., Yamamoto, T., and Ikuhara, Y.: Atomic and electronic structures of Ni/YSZ(111) interface. Mater Trans. 45, 2137 (2004).Google Scholar
18.Montesa, C., Shibata, N., Tohei, T., Ayikama, K., Kuromitsu, Y., and Ikuhara, Y.: Application of coincidence of reciprocal lattice point model to metal/sapphire heterointerfaces. Mater. Sci. Eng., B. 173, 234 (2010).Google Scholar
19.Polfus, J., Fontaine, M., Thorgensen, A., Riktor, M., Norsby, T., and Bredesen, R.: Solubility of transition metal interstitials in proton conducting BaZrO3 and similar perovskite oxides. J. Mater. Chem. A 4, 8105 (2016).Google Scholar
20.Islam, M., Slater, P., Tolchard, J., and Dinges, T.: Doping and defect association in AZrO3 (A=Ca, Ba) and LaMO3 (M=Sr, Ga) perovskite-type ionic conductors. Dalton Trans. 0, 3061 (2004).Google Scholar
21.Ze, L., Lui, Z., Wang, S., Choi, Y., Zuo, C., and Liu, M.: A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors. J. Power Sources 195, 471 (2010).Google Scholar
22.Yang, L., Wang, S., Blinn, K., Liu, M., Liu, Z., Cheng, Z, and Liu, M.: Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326, 126 (2009).Google Scholar
23.De Vero, J.C., Develos-Bagarinao, K., Lui, S.S., Kishimoto, H., Ishiyama, T., Yamaji, K., Horita, T., and Yokokawa, H.: Sulfur poisoning of La1–xSrxCo1–yFeyO3–δ thin films with different compositions. J. Alloys Compd. 748, 608 (2018).Google Scholar
24.Rupp, G., Tellez, H., Druce, J., Limbeck, A., Ishihara, T., Kilner, J., and Fleig, J.: Surface chemistry of La0.6Sr0.4CoO3–δ thin films and its impact on the oxygen surface exchange resistance. J. Mater. Chem. A 3, 22759 (2015).Google Scholar
25.Cai, Z., Kubicek, M., Fleig, H., and Yildiz, B.: Chemical heterogeneities on LaSrCoO thin films-correlations to cathode surface activity and stability. Chem. Mater. 24, 1116 (2012).Google Scholar
26.Kishimoto, H., Sakai, N., Horita, T., Yamaji, K., Brito, M., and Yokokawa, H.: Cation transport behavior in SOFC cathode materials of La0.8Sr0.2CoO3 and La0.8Sr0.2FeO3. Solid State Ionics 178, 1317 (2007).Google Scholar
27.Horita, T., Yamaji, K., Sakai, N., Yokokawa, H., Weber, A., and Ivers-Tiffee, E.: Stability at La0.6Sr0.4CoO3−d and La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte interface under current flow for solid oxide fuel cells. Solid State Ionics 133, 143 (2000).Google Scholar
28.Eguchi, K., Akasaka, N., Mitsuyasu, H., and Nonaka, Y.: Process of solid state reaction between doped ceria and zirconia. Solid State Ionics 135, 589 (2000).Google Scholar
29.Tsoga, A., Gupta, A., Noumidis, A., and Nikopoulos, P.: Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater. 48, 4709 (2000).Google Scholar
30.Crank, J.: Mathematics of Diffusion, 2nd ed. (Oxford Science Publications, Oxford, 1975) p. 36.Google Scholar
Supplementary material: File

De Vero et al. supplementary material

Figures S1-S5 and Table S1

Download De Vero et al. supplementary material(File)
File 1.6 MB