Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T10:28:40.283Z Has data issue: false hasContentIssue false

Light-triggered modulation of cell antioxidant defense by polymer semiconducting nanoparticles in a model organism

Published online by Cambridge University Press:  21 June 2018

Maria Moros
Affiliation:
Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
Anna Lewinska
Affiliation:
Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
Giada Onorato
Affiliation:
Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
Maria Rosa Antognazza
Affiliation:
Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
Francesca Di Maria
Affiliation:
Istituto per la Sintesi Organica e la Fotoreattivita’, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
Martina Blasio
Affiliation:
Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
Guglielmo Lanzani
Affiliation:
Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy Department of Physics, Politecnico di Mila, P.zza L. da Vinci 32, 20133 Milano, Italy
Angela Tino
Affiliation:
Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
Maciej Wnuk
Affiliation:
Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
Claudia Tortiglione*
Affiliation:
Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
*
Address all correspondence to Claudia Tortiglione at [email protected]
Get access

Abstract

Photovoltaic organic semiconductors are emerging in many therapeutic applications, including drug delivery and optical control of cell function. However, for their safe use the possible concomitant elicitation of undesired responses in target cells need to be carefully evaluated. Here we describe molecular responses activated by semiconducting polymer nanoparticles based on poly(3-hexyl)thiophene (P3HT) in the model Hydra vulgaris, previously shown to respond to P3HT-NP photostimulation and showed a decrease in the total antioxidant capacity and an increase in the DNA and protein oxidation levels, paving the way to a novel use of photovoltaic devices to control intracellular redox equilibrium.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

Present address: Instituto de Ciencia de Materiales de Aragón, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain.

References

1.Repina, N.A., Rosenbloom, A., Mukherjee, A., Schaffer, D.V., and Kane, R.S.: At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu. Rev. Chem. Biomol. Eng. 8, 13 (2017).Google Scholar
2.Kushibiki, T., Okawa, S., Hirasawa, T., and Ishihara, M.: Optogenetics: novel tools for controlling mammalian cell functions with light. Int. J. Photoenergy 2014, 10 (2014).Google Scholar
3.Tandon, B., Magaz, A., Balint, R., Blaker, J.J., and Cartmell, S.H.: Electroactive biomaterials: vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv. Drug Deliv. Rev. (in press). doi: 10.1016/j.addr.2017.12.012.Google Scholar
4.Antognazza, M.R., Martino, N., Ghezzi, D., Feyen, P., Colombo, E., Endeman, D., Benfenati, F., and Lanzani, G.: Shedding light on living cells. Adv. Mater. 27, 7662 (2015).Google Scholar
5.Zangoli, M., Di Maria, F., Zucchetti, E., Bossio, C., Antognazza, M.R., Lanzani, G., Mazzaro, R., Corticelli, F., Baroncini, M., and Barbarella, G.: Engineering thiophene-based nanoparticles to induce phototransduction in live cells under illumination. Nanoscale 9, 9202 (2017).Google Scholar
6.Lu, L., Zheng, T., Wu, Q., Schneider, A.M., Zhao, D., and Yu, L.: Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666 (2015).Google Scholar
7.Ghezzi, D., Antognazza, M.R., Dal Maschio, M., Lanzarini, E., Benfenati, F., and Lanzani, G.: A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2, 166 (2011).Google Scholar
8.Benfenati, V., Martino, N., Antognazza, M.R., Pistone, A., Toffanin, S., Ferroni, S., Lanzani, G., and Muccini, M.: Photostimulation of whole-cell conductance in primary rat neocortical astrocytes mediated by organic semiconducting thin films. Adv. Healthcare Mater. 3, 392 (2014).Google Scholar
9.Martino, N., Feyen, P., Porro, M., Bossio, C., Zucchetti, E., Ghezzi, D., Benfenati, F., Lanzani, G., and Antognazza, M.R.: Photothermal cellular stimulation in functional bio-polymer interfaces. Sci. Rep. 5, 8911 (2015).Google Scholar
10.Feyen, P., Colombo, E., Endeman, D., Nova, M., Laudato, L., Martino, N., Antognazza, M.R., Lanzani, G., Benfenati, F., and Ghezzi, D.: Light-evoked hyperpolarization and silencing of neurons by conjugated polymers. Sci. Rep. 6, 22718 (2016).Google Scholar
11.Lodola, F., Martino, N., Tullii, G., Lanzani, G., and Antognazza, M.R.: Conjugated polymers mediate effective activation of the mammalian ion channel transient receptor potential vanilloid 1. Sci. Rep. 7, 8477 (2017).Google Scholar
12.Ghezzi, D., Antognazza, M.R., Maccarone, R., Bellani, S., Lanzarini, E., Martino, N., Mete, M., Pertile, G., Bisti, S., Lanzani, G., and Benfenati, F.: A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 7, 400 (2013).Google Scholar
13.Maya-Vetencourt, J.F., Ghezzi, D., Antognazza, M.R., Colombo, E., Mete, M., Feyen, P., Desii, A., Buschiazzo, A., Di Paolo, M., Di Marco, S., Ticconi, F., Emionite, L., Shmal, D., Marini, C., Donelli, I., Freddi, G., Maccarone, R., Bisti, S., Sambuceti, G., Pertile, G., Lanzani, G., and Benfenati, F.: A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat. Mater. 16, 681 (2017).Google Scholar
14.Ambrosone, A., Roopin, M., Pelaz, B., Abdelmonem, A.M., Ackermann, L.M., Mattera, L., Allocca, M., Tino, A., Klapper, M., Parak, W.J., Levy, O., and Tortiglione, C.: Dissecting common and divergent molecular pathways elicited by CdSe/ZnS quantum dots in freshwater and marine sentinel invertebrates. Nanotoxicology 11, 289 (2017).Google Scholar
15.Moros, M., Ambrosone, A., Stepien, G., Fabozzi, F., Marchesano, V., Castaldi, A., Tino, A., de la Fuente, J.M., and Tortiglione, C.: Deciphering intracellular events triggered by mild magnetic hyperthermia in vitro and in vivo. Nanomedicine 10, 2167 (2015).Google Scholar
16.Tortiglione: An ancient model organism to test in vivo novel functional nanocrystals in Biomedical Engineering: from theory to application edited by R. Fazel-Rezai (InTech—Open Access Publisher 2011), pp. 225.Google Scholar
17.Tortiglione, C., Antognazza, M.R., Tino, A., Bossio, C., Marchesano, V., Bauduin, A., Zangoli, M., Morata, S.V., and Lanzani, G.: Semiconducting polymers are light nanotransducers in eyeless animals. Sci. Adv. 3, e1601699 (2017).Google Scholar
18.Wang, B., Yuan, H., Zhu, C., Yang, Q., Lv, F., Liu, L., and Wang, S.: Polymer-drug conjugates for intracellar molecule-targeted photoinduced inactivation of protein and growth inhibition of cancer cells. Sci. Rep. 2, 766 (2012).Google Scholar
19.Giron, R.M., Marco-Martinez, J., Bellani, S., Insuasty, A., Rojas, H.C., Tullii, G., Antognazza, M.R., Filippone, S., and Martin, N.: Synthesis of modified fullerenes for oxygen reduction reactions. J. Mater. Chem. A 4, 14284 (2016).Google Scholar
20.Tullii, G., Desii, A., Bossio, C., Bellani, S., Colombo, M., Martino, N., Antognazza, M.R., and Lanzani, G.: Bimodal functioning of a mesoporous, light sensitive polymer/electrolyte interface. Org. Electron. 46, 88 (2017).Google Scholar
21.Dalle-Donne, I., Giustarini, D., Colombo, R., Rossi, R., and Milzani, A.: Protein carbonylation in human diseases. Trends Mol. Med. 9, 169 (2003).Google Scholar
22.Kannan, K. and Jain, S.K.: Oxidative stress and apoptosis. Pathophysiology 7, 153 (2000).Google Scholar
23.Pecher, J. and Mecking, S.: Nanoparticles of conjugated polymers. Chem. Rev. 110, 6260 (2010).Google Scholar
24.Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C.: Measurement of protein using bicinchoninic acid. Anal Biochem. 150, 76 (1985).Google Scholar
25.Zucchetti, E., Zangoli, M., Bargigia, I., Bossio, C., Di Maria, F., Barbarella, G., D'Andrea, C., Lanzani, G., and Antognazza, M.R.: Poly(3-hexylthiophene) nanoparticles for biophotonics: study of the mutual interaction with living cells. J. Mater. Chem. B 5, 565 (2017).Google Scholar
26.Ambrosone, A., Mattera, L., Marchesano, V., Quarta, A., Susha, A.S., Tino, A., Rogach, A.L., and Tortiglione, C.: Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism. Biomaterials 33, 1991 (2012).Google Scholar
27.Marchesano, A.A.V., Bartelmess, J., Strisciante, F., Tino, A., Echegoyen, L., Tortiglione, C., and Giordani, S.: Impact of carbon nano-onions on hydra vulgaris as a Model organism for nanoecotoxicology. Nanomaterials 5, 1331 (2015).Google Scholar
28.Ambrosone, A. and Tortiglione, C.: Methodological approaches for nanotoxicology using cnidarian models. Toxicol. Mech. Methods 23, 207 (2013).Google Scholar
29.Mosconi, E., Salvatori, P., Saba, M.I., Mattoni, A., Bellani, S., Bruni, F., Santiago Gonzalez, B., Antognazza, M.R., Brovelli, S., Lanzani, G., Li, H., Brédas, J.-L., and De Angelis, F.: Surface polarization drives photoinduced charge separation at the P3HT/water interface. ACS Energy Lett. 1, 454 (2016).Google Scholar
30.Lewinska, A., Wnuk, M., Slota, E., and Bartosz, G.: Total anti-oxidant capacity of cell culture media. Clin. Exp. Pharmacol. Physiol. 34, 781 (2007).Google Scholar
31.Young, I.S.: Measurement of total antioxidant capacity. J. Clin. Pathol. 54, 339 (2001).Google Scholar
32.Valavanidis, A., Vlachogianni, T., and Fiotakis, C.: 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 27, 120 (2009).Google Scholar
33.Rajendran, V., Lehnig, M., and Niemeyer, C.M.: Photocatalytic activity of colloidal CdS nanoparticles with different capping ligands. J. Mater. Chem. 19, 6348 (2009).Google Scholar
34.Waiskopf, N., Ben-Shahar, Y., Galchenko, M., Carmel, I., Moshitzky, G., Soreq, H., and Banin, U.: Photocatalytic reactive oxygen species formation by semiconductor-metal hybrid nanoparticles. Toward light-induced modulation of biological processes. Nano Lett. 16, 4266 (2016).Google Scholar
35.Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., Jia, Q., Niu, G., Huang, X., Zhou, H., Meng, X., Wang, P., Lee, C.S., Zhang, W., and Han, X.: A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014).Google Scholar
36.Poljsak, B., Suput, D., and Milisav, I.: Achieving the Balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013, 956792 (2013).Google Scholar
37.Schieber, M. and Chandel, N.S.: ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453 (2014).Google Scholar
Supplementary material: File

Moros et al. supplementary material

Moros et al. supplementary material 1

Download Moros et al. supplementary material(File)
File 133.8 KB