We report on the experimental observation of Smith–Purcell (SP) radiation generation by charged particle beam from laser–matter interactions. High-power laser pulses were focused onto a thin metal foil target to generate proton beams with energies up to 1.7 MeV via the target normal sheath acceleration (TNSA) process. The particle beam from the TNSA process was sent close to a periodic structure to generate SP radiation. Sub-μJ terahertz pulses were recorded using a pyroelectric detector. Simultaneous measurement of the ion spectra allowed us to estimate the power of the emitted radiation and compare it with the experimental results. The distance between the grating and the particle beam was varied and its effect on the emitted radiation was studied.