When an appropriate mixture of a low-softening borosilicate glass (BSG) and a high-softening high silica glass (HSG) is sintered at temperatures ranging from 800 to 1000 °C, a crystalline phase, identified as cristobalite by XRD, is known to precipitate out of the initial amorphous binary mixture of glasses as the sintering continues. The precipitation of cristobalite is found to originate in HSG, and is controlled by the transport of alkali ions (e.g., K+, Na+, and Li+) from BSG to HSG.1 In this paper, we report that when a small amount of alumina is present as a dopant in the above binary mixture of BSG and HSG, the cristobalite formation is completely prevented at the sintering temperatures investigated. The above result is attributed to a strong affinity between Al+3 from alumina and alkali ions from BSG, which diverts the diffusion of alkali ions from HSG to alumina, thus forming a K+ and Al+3-rich reaction layer adjacent to the alumina particles far too rapidly compared to that of cristobalite formation.