Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T18:19:28.465Z Has data issue: false hasContentIssue false

X-ray scattering study on the structural evolution of AlN/sapphire(0001) films during radiofrequency sputter growth

Published online by Cambridge University Press:  31 January 2011

H. C. Kang
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju, Korea 500-712
S. H. Seo
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju, Korea 500-712
D. Y. Noh*
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju, Korea 500-712
*
a)Address all correspondence to this author. e-mial: [email protected]
Get access

Abstract

We present an x-ray scattering study on the evolution of the growth mode, the surface morphology, and the lattice strain of AlN/sapphire(0001) films during sputter growth. Aligned epitaxial planar layers with strain relaxed to about 2% are nucleated during initial stage growth. As the film thickness increases to an effective “critical” thickness of approximately 250 Å, the growth gradually crosses over to the less aligned island growth. As the growth crossover occurs, the growth front becomes substantially rougher and the residual strain begins to relax. The cogrowth of the planar layer and the islands results in a nonuniform strain distribution.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Edgar, H., Properties of Group III Nitrides (INSPEC, Reading, U.K., 1997).Google Scholar
2.Nakamura, S. and Fasol, G., The Blue Laser Diode GaN Base Light Emitters and Lasers (Springer, Berlin, Germany, 1997).Google Scholar
3.Ponce, F.A. and Bour, D.P., Nature 386(27), 351 (1997).CrossRefGoogle Scholar
4.Sakai, A., Tatsumi, T., and Aoyama, K., Appl. Phys. Lett. 71, 3510 (1997).Google Scholar
5.Bourret, A. and Fuoss, P.H., Appl. Phys. Lett. 61, 1034 (1992).Google Scholar
6.Zheleva, T., Jagannadham, K., and Narayan, J., J. Appl. Phys. 75, 860 (1994).CrossRefGoogle Scholar
7.Srikant, V., Speck, J.S., and Clarke, D.R., J. Appl. Phys. 82, 4286, (1997).CrossRefGoogle Scholar
8.Yim, W.M., Stofko, E.J., and Zanzucchi, P.J., J. Appl. Phys. 44, 292 (1973).CrossRefGoogle Scholar
9.Fathimulla, A. and Lakhani, A.A., J. Appl. Phys. 54, 4586 (1986).Google Scholar
10.Hasegawa, F., Takahashi, T., and Kubo, K., J. Appl. Phys. 26, 1555 (1987).CrossRefGoogle Scholar
11.Yoshida, S., Misawa, S., Fujii, Y., Takada, S., Hayakawa, H., Gonda, S., and Itoh, A., J. Vac. Sci. Technol. 16, 990 (1979).Google Scholar
12.Kaya, K., Kanno, Y., Takahashi, H., Shibat, Y., and Hirai, T., Jpn. J. Appl. Phys. 35, 2782 (1996).Google Scholar
13.Amano, H., Akasaki, T., Hiramatsu, H., Koide, N., and Sawaki, N., Thin Solid Films 163, 415 (1988).Google Scholar
14.Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth 98, 209 (1989).CrossRefGoogle Scholar
15.Hiramnatu, K., Itoh, S., Amano, H., Akasaki, I., Kuwano, N., Shiraiahi, T., and Oki, K., J. Cryst. Growth 115, 628 (1991).CrossRefGoogle Scholar
16.Akasaki, I., Amano, H., Murakami, H., Sassa, M., Kato, H., and Manabe, K., J. Cryst. Growth 128, 379 (1993).Google Scholar
17.Ponce, F.A., Krusor, B.S., Major, J.S. Jr., Plano, W.E., and Welch, D.F., Appl. Phys. Lett. 167(3), 17 (1995).Google Scholar
18.Davis, R.F., Tanaka, S., Rowland, L.B., Kern, R.S., Sitar, Z., Ailey, S.K., and Wang, C., J. Cryst. Growth 164, 132 (1996).Google Scholar
19.Daudin, B. and Widmann, F., J. Cryst. Growth 182, 1 (1997).CrossRefGoogle Scholar
20.Vispute, R.D., Wu, H., and Narayan, J., Appl. Phys. Lett. 67, 1549 (1995).CrossRefGoogle Scholar
21.Sun, C.J., Kung, P., Saxler, A., Ohsato, H., Haritos, K., and Razeghi, M., J. Appl. Phys. 75, 3964 (1994).CrossRefGoogle Scholar
22.Shim, K.H., Myoung, J., Gluschenkov, O., Kim., K., Kim, C., and Robinson, I.K., Jpn. J. Appl. Phys. 37, L313 (1998).CrossRefGoogle Scholar
23.Yeadon, M., Marshaal, M.T., Hamdani, F., Pekin, S., Morkoc, H., and Gibson, J.M., J. Appl. Phys. 83, 2847 (1998).CrossRefGoogle Scholar
24.Dovidenko, K., Oktyabrsky, S., and Narayan, J., J. Appl. Phys. 82, 4296 (1997).CrossRefGoogle Scholar
25.Heffelfinger, J.R., Medlin, D.L., and McCarty, K.F., J. Appl. Phys. 85, 466 (1999).Google Scholar
26.Lairson, B.M., Payne, A.P., Brennan, S., Rensing, N.M., Danlels, B.J., and Clemens, B.M., J. Appl. Phys. 78, 4449 (1995).CrossRefGoogle Scholar
27.Vlieg, E., Denier van der Gon, A.W., van der Ween, J.F., Macdonald, J.E., and Norris, C., Phys. Rev. Lett. 61, 2241 (1988).Google Scholar
28.Fuoss, P.H., Kisker, D.W., Renaud, G., Tokuda, K.L., Brennan, S., and Kahn, J.L., Phys. Rev. Lett. 63, 2389 (1989).Google Scholar
29.Noh, D.Y., Hwu, Y., and Liang, K.S., Phys. Rev. B 56, 7080 (1997).CrossRefGoogle Scholar
30.Miceli, P.R. and Palmstrom, C.J., Phys. Rev. B 51, 5506 (1995).Google Scholar
31.Sinha, S.K., Sirota, E.B., Garoff, S., and Stanley, H.B., Phys. Rev. B 38, 2297 (1988).CrossRefGoogle Scholar
32.Noh, D.Y., Hwu, Y., Kim, H.K., and Hong, M., Phys. Rev. B 51(7), 4441 (1995).CrossRefGoogle Scholar
33.Takeuchi, T., Takeuchi, H., Sota, S., Sakai, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L177 (1997).CrossRefGoogle Scholar
34.Parker, C.A., Roberts, J.C., Bedair, S.M., Reed, M.J., Liu, S.X., and El-Masry, N.A., Appl. Phys. Lett. 75, 2776 (1999).Google Scholar
35.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1978).Google Scholar
36.Muller, J. and Grant, M., Phys. Rev. Lett. 82, 1736 (1999).CrossRefGoogle Scholar
37.Leonard, F. and Desai, R.C., Appl. Phys. Lett. 74, 40 (1999).CrossRefGoogle Scholar
38.Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, 3rd ed. (Per-gamon, New York, 1986), p. 46.Google Scholar