Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T17:34:51.933Z Has data issue: false hasContentIssue false

Parameter effect on the crystallization of Nd:yttrium aluminum garnet laser-ablated TiO2 thin film

Published online by Cambridge University Press:  31 January 2011

Mrinal Pal
Affiliation:
Nanoarchitectonics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Aiko Narazaki
Affiliation:
Nanoarchitectonics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Takeshi Sasaki
Affiliation:
Nanoarchitectonics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Naoto Koshizaki*
Affiliation:
Nanoarchitectonics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
*
a) Address all correspondence to this author.
Get access

Abstract

Process parameter dependency on the phase transition from anatase to rutile phase of laser-ablated TiO2 films was investigated. Lower ambient argon pressure, longer deposition time, higher laser fluence, and smaller target–substrate separation give rutile phase from anatase phase at comparatively lower temperature. The relationship between thickness and onset temperature of anatase–rutile transformation can be comprehensively explained in terms of film thickness. Thinner films have higher phase transition temperature. The presence of helium gas during deposition favors the anatase–rutile transition at a temperature lower than that expected from the above relationship.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mo, S.D. and Ching, W.Y., Phys. Rev. B 51, 13023 (1995).CrossRefGoogle Scholar
2.Howitt, D.G. and Harker, A.B., J. Mater. Res. 2, 201 (1987).CrossRefGoogle Scholar
3.Amtout, A. and Leonelli, R., Phys. Rev. B 51, 6842 (1995).CrossRefGoogle Scholar
4.Ocana, M., Garcia-Ramos, J.V., and Serna, C.J., J. Am. Ceram. Soc. 75, 2010 (1992).CrossRefGoogle Scholar
5.Wicaksana, D., Kobayashi, A., and Kinbara, A., J. Vac. Sci. Tech-nol. A 10, 1479 (1992).CrossRefGoogle Scholar
6.Okimura, K., Maeda, N., and Shibata, A., Thin Solid Films 281–282, 427 (1996).CrossRefGoogle Scholar
7.Yuan, Z. and Zhang, L., Nanostruct. Mater. 10, 1127 (1998).CrossRefGoogle Scholar
8.Gennari, F.C. and Pasquevich, D.M., J. Mater. Sci. 33, 1571 (1998).CrossRefGoogle Scholar
9.Sankur, H. and Cheung, J.T., Appl. Phys. A 47, 271 (1988).CrossRefGoogle Scholar
10.Durand, H.A., Brimaud, J.H., Hellman, O., Shibata, H., Sakuragi, S., Makita, Y., Gesbert, D., and Meyrueis, P., Appl. Surf. Sci. 86, 122 (1995).CrossRefGoogle Scholar
11.Yoon, H., Kim, S.K., and Sun Im, H., Bull. Korean Chem. Soc. 18, 640 (1997).Google Scholar
12.Ardakani, H.K., Thin Solid Films 248, 234 (1994).CrossRefGoogle Scholar
13.Bange, K., Ottermann, C.R., Anderson, O., Jeschkowski, U., Laube, M., and Feile, R., Thin Solid Films 197, 279 (1991).CrossRefGoogle Scholar
14.Iida, Y. and Ozaki, S., J. Am. Ceram. Soc. 44, 120 (1961).CrossRefGoogle Scholar
15.Farabaugh, E.N. and Sanders, M., J. Vac. Sci. Technol. A 1, 356 (1983).CrossRefGoogle Scholar
16.Shannon, R.D. and Pask, J.A., J. Am. Ceram. Soc. 48, 391 (1965).CrossRefGoogle Scholar