Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T06:34:56.112Z Has data issue: false hasContentIssue false

Future directions for studying the evolution of general intelligence

Published online by Cambridge University Press:  15 August 2017

Judith M. Burkart
Affiliation:
Department of Anthropology, University of Zurich, CH-8125 Zurich, [email protected]@[email protected]://www.aim.uzh.ch/de/Members/seniorlecturers/judithburkart.htmlhttp://www.aim.uzh.ch/de/Members/phdstudents/micheleschubiger.htmlhttp://www.aim.uzh.ch/de/Members/profofinstitute/vanschaik.html
Michèle N. Schubiger
Affiliation:
Department of Anthropology, University of Zurich, CH-8125 Zurich, [email protected]@[email protected]://www.aim.uzh.ch/de/Members/seniorlecturers/judithburkart.htmlhttp://www.aim.uzh.ch/de/Members/phdstudents/micheleschubiger.htmlhttp://www.aim.uzh.ch/de/Members/profofinstitute/vanschaik.html
Carel P. van Schaik
Affiliation:
Department of Anthropology, University of Zurich, CH-8125 Zurich, [email protected]@[email protected]://www.aim.uzh.ch/de/Members/seniorlecturers/judithburkart.htmlhttp://www.aim.uzh.ch/de/Members/phdstudents/micheleschubiger.htmlhttp://www.aim.uzh.ch/de/Members/profofinstitute/vanschaik.html

Abstract

The goal of our target article was to lay out current evidence relevant to the question of whether general intelligence can be found in nonhuman animals in order to better understand its evolution in humans. The topic is a controversial one, as evident from the broad range of partly incompatible comments it has elicited. The main goal of our response is to translate these issues into testable empirical predictions, which together can provide the basis for a broad research agenda.

Type
Authors' Response
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. L. & Finlay, B. L. (2014) Allocating structure to function: The strong links between neuroplasticity and natural selection. Frontiers in Human Neuroscience 7:918, 116.CrossRefGoogle ScholarPubMed
Barrett, H. C. (2015) Modularity. In: Evolutionary perspectives on social psychology, ed. Zeigler-Hill, V., Welling, L. L. M. & Schackelford, T. K., pp. 3951. Springer International.CrossRefGoogle Scholar
Burkart, J. M., Allon, O., Amici, F., Fichtel, C., Finkenwirth, C., Heschl, A., Huber, J., Isler, K., Kosonen, Z., Martins, E., Meulman, E., Richiger, R., Rueth, K., Spillmann, B., Wiesendanger, S. & van Schaik, C. P. (2014) The evolutionary origin of human hyper-cooperation. Nature Communications 5:4747.CrossRefGoogle ScholarPubMed
Burkart, J. M., Hrdy, S. B. & van Schaik, C. P. (2009) Cooperative breeding and human cognitive evolution. Evolutionary Anthropology 18:175–86.CrossRefGoogle Scholar
Cauchoix, M. & Chaine, A. S. (2016) How can we study the evolution of animal minds? Frontiers in Psychology 7:358.CrossRefGoogle Scholar
Coale, A. J. (1989) Demographic transition. In: Social economics, ed. Eatwell, J., Milgate, M. & Newman, P. pp. 1623. Palgrave Macmillan.CrossRefGoogle Scholar
Deary, I. J. (2008) Why do intelligent people live longer? Nature 456(7219):175–76.CrossRefGoogle ScholarPubMed
Deary, I. J., Cox, S. R. & Ritchie, S. J. (2016) Getting Spearman off the skyhook: One more in a century (since Thomson, 1916) of attempts to vanquish g . Psychological Inquiry 27(3):192–99.CrossRefGoogle Scholar
Deary, I. J., Penke, L. & Johnson, W. (2010) The neuroscience of human intelligence differences. Nature Reviews Neuroscience 11(3):201–11.CrossRefGoogle ScholarPubMed
Fernandes, H. B. F., Woodley, M. A. & te Nijenhuis, J. (2014) Differences in cognitive abilities among primates are concentrated on G: Phenotypic and phylogenetic comparisons with two meta-analytical databases. Intelligence 46:311–22.CrossRefGoogle Scholar
Fiorito, G. & Scotto, P. (1992) Observational learning in Octopus vulgaris . Science 256(5056):545.CrossRefGoogle ScholarPubMed
Flynn, J. R. (2016) Does your family make you smarter?: Nature, nurture, and human autonomy. Cambridge University Press.CrossRefGoogle Scholar
Forss, S. I. F., Schuppli, C., Haiden, D., Zweifel, N. & van Schaik, C. P. (2015) Contrasting responses to novelty by wild and captive orangutans. American Journal of Primatology 77(10):1109–21.CrossRefGoogle ScholarPubMed
Gottfredson, L. S. (1997) Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence 24:1323.CrossRefGoogle Scholar
Heldstab, S. A., Kosonen, Z. K., Koski, S. E., Burkart, J. M., van Schaik, C. P. & Isler, K. (2016) Manipulation complexity in primates coevolved with brain size and terrestriality. Scientific Reports 6:24528. doi: 10.1038/srep24528.CrossRefGoogle ScholarPubMed
Henrich, J. (2016) The secret of our success. Princeton University Press.CrossRefGoogle Scholar
Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B. & Tomasello, M. (2007) Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science 317:1360–66.CrossRefGoogle ScholarPubMed
Hill, B. D., Foster, J. D., Sofko, C., Elliott, E. M. & Shelton, J. T. (2016b) The interaction of ability and motivation: Average working memory is required for Need for Cognition to positively benefit intelligence and the effect increases with ability. Personality and Individual Differences 98:225–28.CrossRefGoogle Scholar
Holekamp, K. E., Dantzer, B., Stricker, G., Yoshida, K. C. S. & Benson-Amram, S. (2015) Brains, brawn and sociality: A hyaena's tale. Animal Behaviour 103:237–48.CrossRefGoogle ScholarPubMed
Isden, J., Panayi, C., Dingle, C. & Madden, J. (2013) Performance in cognitive and problem-solving tasks in male spotted bowerbirds does not correlate with mating success. Animal Behaviour 86(4):829–38. doi: 10.1016/j.anbehav.2013.07.024.CrossRefGoogle Scholar
Johnson, W., te Nijenhuis, J. & Bouchard, T. J. (2008) Still just 1 g: Consistent results from five test batteries. Intelligence 36(1):8195.CrossRefGoogle Scholar
Kovacs, K. & Conway, A. R. A. (2016) Process overlap theory: A unified account of the general factor of intelligence. Psychological Inquiry 27(3):151–77. doi: 10.1080/1047840X.2016.1153946.CrossRefGoogle Scholar
Lefebvre, L., Reader, S. M. & Sol, D. (2004) Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution 63:233–46.CrossRefGoogle ScholarPubMed
Mellars, P. & French, J. C. (2011) Tenfold population increase in Western Europe at the Neandertal–to–modern human transition. Science 333(6042):623–27.CrossRefGoogle ScholarPubMed
Morand-Ferron, J. & Quinn, J. L. (2015) The evolution of cognition in natural populations. Trends in Cognitive Sciences 19(5):235–37.CrossRefGoogle ScholarPubMed
Morand-Ferron, J., Cole, E. F. & Quinn, J. L. (2015) Studying the evolutionary ecology of cognition in the wild: A review of practical and conceptual challenges. Biological Reviews 91(2):367–89.CrossRefGoogle Scholar
Nisbett, R. E., Aronson, J., Blair, C., Dickens, W., Flynn, J., Halpern, D. F. & Turkheimer, E. (2012) Intelligence: New findings and theoretical developments. American Psychologist 67(2):130–59.CrossRefGoogle ScholarPubMed
Oberauer, K., Schulze, R., Wilhelm, O. & Süss, H.-M. (2005) Working memory and intelligence—Their correlation and their relation: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin 131:61–5; author reply 72–5. doi: 10.1037/0033-2909.131.1.61.CrossRefGoogle ScholarPubMed
Olkowicz, S., Kocourek, M., Lučan, R. K., Porteš, M., Fitch, W. T., Herculano-Houzel, S. & Němec, P. (2016) Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences USA 113(26):7255–60. doi: 10.1073/pnas.1517131113.CrossRefGoogle ScholarPubMed
Reader, S. M., Hager, Y. & Laland, K. N. (2011) The evolution of primate general and cultural intelligence. Philosophical Transactions of the Royal Society B 366:1017–27.CrossRefGoogle ScholarPubMed
Rowe, C. & Healy, S. D. (2014) Measuring variation in cognition. Behavioral Ecology 25(6):1287–92.CrossRefGoogle Scholar
Shaw, R. C., Boogert, N. J., Clayton, N. S. & Burns, K. C. (2015) Wild psychometrics: Evidence for “general” cognitive performance in wild New Zealand robins, Petroica longipes. Animal Behaviour 109:101–11. doi: 10.1016/j.anbehav.2015.08.001.CrossRefGoogle Scholar
Stevens, J. R., Kennedy, B. A., Morales, D. & Burks, M. (2016) The domain specificity of intertemporal choice in pinyon jays. Psychonomic Bulletin & Review 23(3):915–21.CrossRefGoogle ScholarPubMed
Tomasello, M. & Call, J. (1997) Primate cognition. Oxford University Press.CrossRefGoogle Scholar
van der Maas, H. L. J., Dolan, C. V, Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M. & Raijmakers, M. E. J. (2006) A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review 113(4):842–61. doi: 10.1037/0033-295X.113.4.842.CrossRefGoogle ScholarPubMed
van Schaik, C. P., Burkart, J. M., Damerius, L., Forss, S. I. F., Koops, K., van Noordwijk, M. A. & Schuppli, C. (2016) The reluctant innovator: Orangutans and the phylogeny of creativity. Philosophical Transactions B 371(1690):20150183.CrossRefGoogle ScholarPubMed
van Woerden, J. T., Willems, E. P., van Schaik, C. P. & Isler, K. (2012) Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution 66(1):191–99.CrossRefGoogle ScholarPubMed