Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T06:36:59.716Z Has data issue: false hasContentIssue false

The false dichotomy of domain-specific versus domain-general cognition

Published online by Cambridge University Press:  15 August 2017

Ivo Jacobs
Affiliation:
Cognitive Science, Department of Philosophy, Lund University, 221 00, Lund, [email protected]@lucs.lu.sehttp://www.fil.lu.se/person/IvoJacobshttp://www.fil.lu.se/person/PeterGardenfors
Peter Gärdenfors
Affiliation:
Cognitive Science, Department of Philosophy, Lund University, 221 00, Lund, [email protected]@lucs.lu.sehttp://www.fil.lu.se/person/IvoJacobshttp://www.fil.lu.se/person/PeterGardenfors

Abstract

The qualitative division between domain-general and domain-specific cognition is unsubstantiated. The distinction is instead better viewed as opposites on a gradual scale, which has more explanatory power and fits current empirical evidence better. We also argue that causal cognition may be more general than social learning, which it often involves.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateson, P. & Curley, J. (2013) Developmental approaches to behavioural biology. Nova Acta Leopoldina 111:89110.Google Scholar
Blaisdell, A. P., Sawa, K., Leising, K. J. & Waldmann, M. R. (2006) Causal reasoning in rats. Science 311:1020–22.Google Scholar
Bolhuis, J. J. (1991) Mechanisms of avian imprinting: A review. Biological Reviews 66:303–45. doi: 10.1111/j.1469-185X.1991.tb01145.x.Google Scholar
Gärdenfors, P. (2003) How homo became sapiens: On the evolution of thinking. Oxford University Press.Google Scholar
Jacobs, I. F., von Bayern, A., Martin-Ordas, G., Rat-Fischer, L. & Osvath, M. (2015) Corvids create novel causal interventions after all. Proceedings of the Royal Society B: Biological Sciences 282:20142504. doi: 10.1098/rspb.2014.2504.CrossRefGoogle Scholar
Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W. & Uller, T. (2011) Cause and effect in biology revisited: Is Mayr's proximate-ultimate dichotomy still useful? Science 334:1512–16. doi: 10.1126/science.1210879.CrossRefGoogle ScholarPubMed
Martinho, A. & Kacelnik, A. (2016) Ducklings imprint on the relational concept of “same or different”. Science 353:286–88. doi: 10.1126/science.aaf4247.Google Scholar
Osvath, M., Kabadayi, C. & Jacobs, I. F. (2014) Independent evolution of similar complex cognitive skills: The importance of embodied degrees of freedom. Animal Behavior and Cognition 1:249–64. doi: 10.12966/abc.08.03.2014.Google Scholar
Ploeger, A. & Galis, F. (2011) Evo devo and cognitive science. Wiley Interdisciplinary Reviews: Cognitive Science 2:429–40. doi: 10.1002/wcs.137.Google Scholar
Tomasello, M. & Call, J. (1997) Primate cognition. Oxford University Press.Google Scholar
Vallortigara, G. (2012a) Core knowledge of object, number, and geometry: A comparative and neural approach. Cognitive Neuropsychology 29:213–36. doi: 10.1080/02643294.2012.654772.Google Scholar
Vallortigara, G. (2012b) The cognitive chicken: Visual and spatial cognition in a non–mammalian brain. In: The Oxford handbook of comparative cognition, ed. Zentall, T. R. & Wasserman, E. A., pp. 4866. Oxford University Press.Google Scholar
West-Eberhard, M. J. (2003) Developmental plasticity and evolution. Oxford University Press.Google Scholar
Woodward, J. (2011) A philosopher looks at tool use and causal understanding. In: Tool use and causal cognition, ed. McCormack, T., Hoerl, C. & Butterfill, S., pp. 1850. Oxford University Press. doi: 10.1093/acprof:oso/9780199571154.003.0002.Google Scholar