Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T15:51:40.381Z Has data issue: false hasContentIssue false

3 - Electrons in Quantum Semiconductors Structures: More Advanced Systems and Methods

Published online by Cambridge University Press:  06 July 2010

Keith Barnham
Affiliation:
Imperial College of Science, Technology and Medicine, London
Dimitri Vvedensky
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

In Chapter 2, low-dimensional systems were discussed in terms of a single-electron picture, and the behaviour of an electron was examined in the case that it is acted on by various potentials in semiconductors. Those potentials have been supposed to be externally imposed, for instance by a discontinuity in the band gap at an interface between two materials. But an electron will also feel the effect of other electrons in the system in which it finds itself.

There are circumstances in which these many-electron effects can be ignored, for example, in an undoped semiconductor with very few free charges. But in many cases, effects due to the presence of other electrons can be extremely important. Some of the most interesting low-dimensional systems involve many charges: there can be many free electrons, and there will often be in addition some distribution of fixed charges (space charge). To study such systems properly, we must discuss how to take into account the presence of such charges. The problem is one of self-consistency because we are trying to predict the behaviour of electrons (or holes), while that behaviour will itself depend upon those charges whose behaviour we are trying to predict: in other words, the problem itself depends upon the solution to the problem.

Many-body Effects

The Hartree Approximation

Consider the reaction of conduction electrons to the presence of a potential well V0(z) (we suppose this to be an externally determined well, e.g. a finite square well, which restricts electrons into a two-dimensional region).

Type
Chapter
Information
Low-Dimensional Semiconductor Structures
Fundamentals and Device Applications
, pp. 79 - 122
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×