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A generalization of immanants based on
partition algebra characters
John M. Campbell

Abstract. We introduce a generalization of immanants of matrices, using partition algebra charac-
ters in place of symmetric group characters. We prove that our immanant-like function on square
matrices, which we refer to as the recombinant, agrees with the usual definition for immanants for
the special case whereby the vacillating tableaux associated with the irreducible characters corre-
spond, according to the Bratteli diagram for partition algebra representations, to the integer partition
shapes for symmetric group characters. In contrast to previously studied variants and generalizations
of immanants, as in Temperley–Lieb immanants and 𝑓 -immanants, the sum that we use to define
recombinants is indexed by a full set of partition diagrams, as opposed to permutations.

1 Introduction

The concept of the immanant of a matrix was introduced in a seminal 1934 article by
Littlewood and Richardson [19]. As suggested by Littlewood and Richardson [19], by
generalizing determinants and permanents of matrices using symmetric group charac-
ters, this provides a way of unifying disparate areas of combinatorial analysis, linear
algebra, and representation theory. Since partition algebras are such natural extensions
of symmetric group algebras [11], this leads us to consider how immanants of matrices
may be generalized using partition algebra characters. This forms the main purpose of
our article, in which we introduce the concept of the recombinant of a matrix. This gives
us a generalization of immanants that is separate from the concept of an 𝑓 -immanant.

Given an 𝑛 × 𝑛matrix

𝐴 =
(
𝑎𝑖, 𝑗

)
𝑛×𝑛 =

©­­­­«
𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛
𝑎2,1 𝑎2,2 · · · 𝑎2,𝑛
...

...
. . .

...

𝑎𝑛,1 𝑎𝑛,2 · · · 𝑎𝑛,𝑛

ª®®®®¬
, (1.1)

the Leibniz identity for determinants is as below:

det(𝐴) =
∑︁
𝜎∈𝑆𝑛

(
sgn(𝜎)

𝑛∏
𝑖=1

𝑎𝑖,𝜎𝑖

)
, (1.2)
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2 J.M. Campbell

letting 𝑆𝑛 denotes the group of all permutations of {1, 2, . . . , 𝑛}. The permanent of (1.1)
is defined by replacing the sign function in (1.2) as below:

perm(𝐴) =
∑︁
𝜎∈𝑆𝑛

𝑛∏
𝑖=1

𝑎𝑖,𝜎𝑖
. (1.3)

Thematrix functions in (1.2) and (1.3) are special cases of the immanant function defined
in [19] and as below.

An integer partition is a finite tuple 𝜆 of non-increasing natural numbers. If the sum
of all of the entries of 𝜆 is a natural number 𝑛, then 𝜆 is said to be a partition of 𝑛, and
this is denoted as 𝜆 ⊢ 𝑛. For 𝜆 ⊢ 𝑛, we may let 𝜒𝜆

𝑆𝑛
be the irreducible character that is

of the symmetric group 𝑆𝑛 and that corresponds to 𝜆. The immanant Imm𝜆 of (1.1) may
be defined so that:

Imm𝜆 (𝐴) =
∑︁
𝜎∈𝑆𝑛

𝜒𝜆
𝑆𝑛
(𝜎)

𝑛∏
𝑖=1

𝑎𝑖,𝜎𝑖
. (1.4)

We find that the 𝜆 = (1𝑛) case of (1.4) agrees with (1.2) and the 𝜆 = (𝑛) case of (1.4)
agrees with (1.3). The purpose of this article is to generalize (1.2), (1.3), and (1.4) using
partition algebra characters, as opposed to symmetric group characters.

Immanants are of interest withinmany different areas of advanced linear algebra; see
[2, 4, 5, 8, 12, 13, 15, 18, 26, 32], for example, andmany related references. The definition
of immanants in terms of the irreducible characters of the symmetric group naturally
lends itself to applications related tomany different areas of algebraic combinatorics; for
example, see [1, 6, 7, 9, 17, 31] andmany similar references. The foregoing considerations
reflect the interdisciplinary nature about immanants andmotivate our generalization of
immanants.

Let𝑉 denote an 𝑟-dimensional vector space. Let the general linear groupGL𝑟 (C) act
on the tensor space𝑉⊗𝑛 diagonally. By taking 𝑆𝑟 as a subgroup of GL𝑟 (C) and restrict-
ing the action of GL𝑟 (C) to permutationmatrices, partition algebras may be defined via
the centralizer algebra

𝑃𝑛 (𝑟) � End𝑆𝑟
(
𝑉⊗𝑛) . (1.5)

The study of partition algebras was developed in the field of statistical mechanics via
the centralizer algebra in (1.5), with reference to the work of Jones [16] and Martin
[21, 22, 23, 24]. This again speaks to the interdisciplinary interest surrounding our
generalization of immanants via partition algebra characters.

2 Preliminaries

Our notation concerning partition algebras ismainly borrowed fromHalverson’s article
on the character theory for partition algebras [10].

Definition 2.1 A partition diagram is the equivalence class of a simple graph with 2𝑛
vertices labeled with {1, 2, . . . , 𝑛, 1′, 2′, . . . , 𝑛′}, where two such graphs are considered
to be equivalent if the connected components are the same.
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A generalization of immanants 3

A partition diagram 𝑑 is often denotedwith any simple graph in the equivalence class
𝑑, and in such a way so that the vertices labeled with 1, 2, . . ., 𝑛 are arranged into a top
row and the vertices labeled with 1′, 2′, . . ., 𝑛′ are arranged into a bottow row. A given
partition diagram 𝑑 may also be denoted with the set-partition given by the connected
components of any graph in the equivalence class 𝑑. We let it be understood that wemay
identify a partition diagram 𝑑 with any graph in the equivalence class 𝑑.

Example 2.1 The partition diagram associatedwith the set-partition {{4′, 4}, {3′}, {2′,
1, 2, 3}, {1′}} may be denoted as

(2.1)

and as

.

Definition 2.2 The propagation number of a partition diagram 𝑑 refers to the number of
connected components of 𝑑 with at least one upper vertex and at least one lower vertex.

Example 2.2 The propagation number of the partition diagram shown in (2.1) is 2.

We let 𝑃𝑛 (𝑟) denote the C-span of all order-𝑛 partition diagrams, and we endow
this space with the multiplicative operation specified in [10]. Structures of this form are
referred to as partition algebras. We find that the symmetric group algebra of order 𝑛
spanned byC is naturally a subalgebra, by taking the span of partition diagrams of order
𝑛 and of propagation number 𝑛.

For integer partitions 𝜆 and 𝜇, if 𝜇𝑖 ≤ 𝜆𝑖 for all 𝑖, then 𝜆/𝜇 denotes the skew shape
obtained by removing 𝜇 from 𝜆. We let 𝑃𝑛−1 (𝑟) be embedded in 𝑃𝑛 (𝑟) by adding ver-
tices labeled with 𝑛 and 𝑛′ and by letting these vertices be adjacent. From the branching
rules subject to the restriction from 𝑃𝑛 (𝑟) to 𝑃𝑛−1 (𝑟), and with the use of double cen-
tralizer theory via (1.5), it can be shown that the irreducible representations of 𝑃𝑛 (𝑟)
are in bijection with �𝑃𝑛 (𝑟) = {𝜆 ⊢ 𝑟 : |𝜆∗ | ≤ 𝑛}, (2.2)
where 𝜆∗ = 𝜆/(𝜆1).

We let 𝑀𝜆 denote the irreducible representation of 𝑃𝑛 (𝑟) indexed by 𝜆 ∈ �𝑃𝑛 (𝑟).
Following [10], we establish a bijection between (2.2) and the set 𝑃𝑛 consisting of all
expressions of the form 𝜆∗ in (2.2), i.e., by mapping 𝜆 to 𝜆∗ and, conversely, by adding
a row to 𝜆∗ appropriately. For 𝜆 ∈ �𝑃𝑛 (𝑟), we may let 𝜒𝜆

𝑃𝑛 (𝑟 ) denote the irreducible
character of 𝑃𝑛 (𝑟) corresponding to 𝑀𝜆.

A basic result in the representation theory of groups is that characters are constant
on conjugacy classes. Halverson [10] introduced a procedure for collecting partition
diagrams so as to form analogues of conjugacy classes. Refer to [10] for details. For a
diagram 𝑑, we let 𝑑𝜇 denote the analogue of a conjugacy class representative, according
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4 J.M. Campbell

to Halverson’s procedure [10], such that 𝜒(𝑑) and 𝜒(𝑑𝜇) are equal up to a power of 𝑟 in
𝑃𝑛 (𝑟), for a given partition algebra character 𝜒.

Following Halverson’s construction [10], we set 𝛾1 = 1, and, for 𝑡 > 1, we set 𝛾𝑡
as the partition diagram corresponding to the set-partition {{1, 2′}, {2, 3′}, . . . , {𝑡 −
1, 𝑡′}, {𝑡, 1′}}.

Example 2.3 The order-5 partition diagram 𝛾5 is

𝛾5 = .

The operation ⊗ on partition diagrams is such that: For partition diagrams 𝑑1 and
𝑑2 of orders 𝑛1 and 𝑛2, the concatenation 𝑑1 ⊗ 𝑑2 is the partition diagram of order
𝑛1+𝑛2 given by positioning 𝑑2 to the right of 𝑑1. Aweak composition 𝜇 of a nonnegative
integer 𝑘 is a finite tuple of nonnegative integers that sum to 𝑘 . For a weak composition
𝜇 = (𝜇1, 𝜇2, . . . , 𝜇ℓ (𝜇) ) of 𝑘 , we may write |𝜇 | in place of 𝑘 . For |𝜇 | > 0, we write

𝛾𝜇 = 𝛾𝜇𝜄 (1) ⊗ 𝛾𝜇𝜄 (2) ⊗ · · · ⊗ 𝛾𝜇𝜄 (𝜅 ) , (2.3)

where the sequence of indices for 𝛾-expressions on the right of (2.3) is such that 𝜄(1) <
𝜄(2) < · · · < 𝜄(𝜅) and where {𝜄(1), 𝜄(2), . . . , 𝜄(𝜅)} consists of the indices 𝑖 such that
𝜇𝑖 is positive. Letting 𝐸1 denote the partition diagram in 𝑃1 (𝑟) without any edges, and
letting |𝜇 | ≤ 𝑛, we borrow Halverson’s notation [10]

𝑑𝜇 = 𝛾𝜇 ⊗ 𝐸1 ⊗ 𝐸1 ⊗ · · · ⊗ 𝐸1︸                   ︷︷                   ︸
𝑛−|𝜇 |

,

letting it be understood that 𝛾𝜇 denotes the empty diagram for the trivial case such that
|𝜇 | = 0.

3 A generalization of immanants

For a permutation 𝑝 of order 𝑛 that we denote as a function

𝑝 : {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑛}, (3.1)

we identify this permutationwith the partition diagramcorresponding to {{1, (𝑝(1))′},
{2, (𝑝(2))′}, . . ., {𝑛, (𝑝(𝑛))′}}. We then consider this partition diagram as being
associated with the product

𝑛∏
𝑖=1

𝑎𝑖, 𝑝 (𝑖) , (3.2)

for the matrix 𝐴 in (1.1), and with regard to the summand in (1.4). So, this raises the
question as to what would be appropriate as an analogue of the product in (3.2), for an
arbitrary partition diagram. This leads us toward the following.
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A generalization of immanants 5

Definition 3.1 For the 𝑛 × 𝑛 matrix in (1.1), we let the product
∏

𝑑 𝑎𝑖, 𝑗 or
∏

𝑑 𝐴 be
defined in the followingmanner. If 𝑑 is of propagation number 0, thenwe let the expres-
sion

∏
𝑑 𝑎𝑖, 𝑗 vanish. If 𝑑 is of a positive propagation number, let 𝐵 be a component of

𝑑 that is propagating. We then form the product of all expressions of the form 𝑎𝑖, 𝑗 such
that 𝑖 is in 𝐵 and 𝑗 ′ is in 𝐵. Let Π𝐵 denote this product we have defined using the com-
ponent 𝐵. We then define

∏
𝑑 𝑎𝑖, 𝑗 as the product of all expressions of the form Π𝐵 for

all propagating components 𝐵 of 𝑑.

Example 3.1 For the partition diagram

𝑑 =

and for the 5 × 5 case of (1.1), we find that∏
𝑑

𝑎𝑖, 𝑗 =
∏
𝑑

𝐴 =
(
𝑎2,1𝑎2,2𝑎2,3

) (
𝑎3,4𝑎3,5𝑎5,4𝑎5,5

)
.

Definition 3.1 puts us in a position to offer a full definition for the concept of the
recombinant of a matrix, as below.

Definition 3.2 Let 𝜆 be an integer partition of 𝑟 such that |𝜆∗ | ≤ 𝑛. We define the
recombinant of the 𝑛 × 𝑛matrix in (1.1) so that

Rec𝜆 (𝐴) =
∑︁
𝑑

𝜒𝜆
𝑃𝑛 (𝑟 ) (𝑑)

∏
𝑑

𝑎𝑖, 𝑗 , (3.3)

where the sum in (3.3) is over all partition diagrams in 𝑃𝑛 (𝑟).

Example 3.2 Let Rec0 denote the recombinant corresponding to irreducible partition
algebra submodules spanned by linear combinations of partition diagrams of propa-
gation number 0. Correspondingly, we let the irreducible characters be written as 𝜒0.
According to Definition 3.2, by writing

Rec0
(
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

)
=

∑︁
𝑑

𝜒0 (𝑑)
∏
𝑑

𝑎𝑖, 𝑗

= 𝜒0 (𝑑1)
∏
𝑑1

𝑎𝑖, 𝑗 + 𝜒0 (𝑑2)
∏
𝑑2

𝑎𝑖, 𝑗 + · · · + 𝜒0 (𝑑15)
∏
𝑑15

𝑎𝑖, 𝑗

according to the ordering shown in Table 1, we may evaluate the recombinant Rec0
according to the character values shown in Table 1, so as to obtain that

Rec0
(
𝑎1,1 𝑎1,2
𝑎2,1 𝑎2,2

)
=𝑎1,1𝑎1,2𝑎2,1𝑎2,2+

𝑎1,1𝑎2,1 + 𝑎1,1𝑎1,2 + 𝑎1,2𝑎2,2 + 𝑎2,1𝑎2,2+
2
(
𝑎1,1𝑎2,2 + 𝑎1,2𝑎2,1

)
+

𝑟
(
𝑎1,1 + 𝑎1,2 + 𝑎2,1 + 𝑎2,2

)
.
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6 J.M. Campbell

𝑖 𝑑𝑖 𝜒0 (𝑑𝑖)
1 {{2′, 1′, 1, 2}} 1
2 {{2′, 1, 2}, {1′}} 1
3 {{2′}, {1′, 1, 2}} 1
4 {{2′, 1′}, {1, 2}} 𝑟

5 {{2′}, {1′}, {1, 2}} 𝑟

6 {{2′, 1′, 1}, {2}} 1
7 {{2′, 1}, {1′, 2}} 2
8 {{2′, 1}, {1′}, {2}} 𝑟

9 {{2′, 2}, {1′, 1}} 2
10 {{2′, 1′, 2}, {1}} 1
11 {{2′, 2}, {1′}, {1}} 𝑟

12 {{2′}, {1′, 1}, {2}} 𝑟

13 {{2′}, {1′, 2}, {1}} 𝑟

14 {{2′, 1′}, {1}, {2}} 𝑟

15 {{2′}, {1′}, {1}, {2}} 𝑟2

Table 1: The SageMath ordering for partition diagrams of order 2, along with the
irreducible character evaluations corresponding to a non-propagating submodule.

We may verify the above evaluation by computing the traces associated with the linear
transforms given by the action of left-multiplication by diagram basis elements on the
irreducible 𝑃2 (𝑟)-moduleℒ{𝑑4, 𝑑14}.

Since our article is based on generalizing immanants using partition algebra char-
acters, it would be appropriate to prove, as below, that Definition 3.2 does indeed
generalize (1.4). In our below proof, we will make use of the property described by
Halverson [10] whereby character tables for partition algebras satisfy a recursion of the
form

Ξ𝑃𝑛 (𝑟 ) =


𝑟Ξ𝑃𝑛−1 (𝑟 )

... ∗
· · · · · ·

0
... Ξ𝑆𝑛

 , (3.4)

where Ξ𝑆𝑛 denotes the character table of 𝑆𝑛.
By direct analogy with how Young tableaux are formed from paths in Young’s lattice,

vacillating tableaux are formed from paths in a Bratteli diagram associated with partition
algebras [11, p. 884]. This Bratteli diagram 𝐴̂ is defined and illustrated in Halverson and
Ram’s seminal article on partition algebras [11, pp. 883–884]. For the case whereby such
a path ends on an integer partition of order 𝑛 at level 𝑛 in 𝐴̂, this corresponds to an
embedding of an irreducible representation of C𝑆𝑛. For a vacillating tableau 𝑇 of this
form, Theorem 3.3 below gives us that the recombinant corresponding to the partition
algebra representation 𝜌 corresponding to𝑇 is the same as the immanant corresponding
to the symmetric group algebra representation corresponding to 𝜌.
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A generalization of immanants 7

Theorem 3.3 Let 𝜆 be an integer partition of 𝑟 such that |𝜆∗ | ≤ 𝑛. For an 𝑛 × 𝑛 matrix 𝐴,
if |𝜆∗ | = 𝑛, then Rec𝜆 (𝐴) = Imm𝜆∗ (𝐴).

Proof Suppose that 𝜇 is a weak composition such that 0 ≤ |𝜇 | ≤ 𝑛. By Corollary 4.2.3
from [10], we have that

𝜒𝜆
𝑃𝑛 (𝑟 )

(
𝑑𝜇

)
= 0 if |𝜇 | < |𝜆∗ |, (3.5)

and that the equality |𝜇 | = |𝜆∗ | = 𝑛 implies that

𝜒𝜆
𝑃𝑛 (𝑟 )

(
𝑑𝜇

)
= 𝜒𝜆∗

𝑆𝑛

(
𝛾𝜇

)
. (3.6)

For a permuting diagram 𝑑, Halverson’s procedure for conjugacy class analogues [10]
gives us that 𝛾𝜇 and 𝑑 are conjugate as permutations. So, for an 𝑛 × 𝑛matrix 𝐴 and for
|𝜆∗ | = 𝑛, we find, from (3.5), that 𝜒𝜆

𝑃𝑛 (𝑟 ) (𝑑) vanishes for all non-propagating partition
diagrams 𝑑, as in the lower left blockof the character table in (3.4), so thatwemay rewrite
(3.3) so that

Rec𝜆 (𝐴) =
∑︁

prop(𝑑)=𝑛
𝜒𝜆
𝑃𝑛 (𝑟 ) (𝑑)

∏
𝑑

𝑎𝑖, 𝑗 , (3.7)

and where the character 𝜒𝜆
𝑃𝑛 (𝑟 ) (𝑑) reduces, in the manner specified in (3.6), to the

corresponding character of 𝑆𝑛 evaluated at the permutation corresponding to the
permuting diagram 𝑑. By Definition 3.1, the product

∏
𝑑 𝑎𝑖, 𝑗 in (3.7) is equal to

𝑎1,𝑑 (1)𝑎2,𝑑 (2) · · · 𝑎𝑛,𝑑 (𝑛) , writing the permuting diagram 𝑑 as a permutation as in
(3.1). ■

Remark 3.4 Let us write 𝐸ℓ to denote the partition diagram corresponding to

1
𝑟
{{1, 1′}, {2, 2′}, . . . , {ℓ − 1, (ℓ − 1)′}, {ℓ, ℓ + 1, . . . , 𝑛}, {ℓ′, (ℓ + 1)′, . . . , 𝑛′}}.

We find that 𝑃𝑛 (𝑟)𝐸ℓ𝑃𝑛 (𝑟) is a two-sided ideal and consists of all linear combinations
of partition diagrams with propagation number strictly less than ℓ. Fundamental results
in the representation theory of partition algebras are such that

C𝑆𝑛 � 𝑃𝑛 (𝑟)/(𝑃𝑛 (𝑟)𝐸𝑛𝑃𝑛 (𝑟)) (3.8)

and such that any irreducible representation of 𝑃𝑛 (𝑟) is either an irreducible represen-
tation of 𝐸𝑛𝑃𝑛 (𝑟)𝐸𝑛 or an irreducible representation of the right-hand side of (3.8); see
[20, §4], for example, and references therein. These properties can be used to formulate
an alternative proof of Theorem 3.3.

Our generalization of immanants, as above, is fundamentally different compared to
previously considered generalizations or variants of the immanant function. Notably,
Definition 3.2 is separate relative to how 𝑓 -immanants are defined. Following [28], an
𝑓 -immanant, by analogy with (1.4), is of the form

Imm 𝑓 (𝐴) =
∑︁
𝜎∈𝑆𝑛

𝑓 (𝜎)
𝑛∏
𝑖=1

𝑎𝑖,𝜎𝑖
(3.9)
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8 J.M. Campbell

for an arbitrary function 𝑓 : 𝑆𝑛 → C. A notable instance of an 𝑓 -immanant that is not
of the form indicated in (1.4) is the Kazhdan–Lusztig immanant, where the 𝑓 -function
in (3.9) is given by Kazhdan–Lusztig polynomials associated to certain permutations. In
contrast to generalizations of immanants of the form shown in (3.9), our lifting of the
definition in (1.4) is based on a sum indexed by the diagram basis of 𝑃𝑛 (𝑟), in contrast
to the index set for the sum in (3.9). In contrast to immanants of 𝑛× 𝑛matrices being in
correspondence with integer partitions of 𝑛, and in contrast to 𝑓 -immanants of 𝑛 × 𝑛

matrices being in correspondencewith class functions on 𝑆𝑛, we have that recombinants
of 𝑛 × 𝑛matrices are in correspondence with the family of integer partitions in (2.2).

4 Future research

We conclude with some areas for future research concerning the matrix function
introduced in this paper.

Immanants are often applied in the field of algebraic graph theory, via immanants of
Laplacian matrices and the like. How could recombinants be applied similarly?

Immanants of Toeplitz matrices are often studied due to recursive properties of such
immanants. What is the recombinant of a given Toeplitz matrix?

A fundamental formula in algebraic combinatorics is Frobenius’ formula for irre-
ducible characters of the symmetric group, which, following [10], was later shown by
Schur to be a consequence of what is now know as Schur–Weyl duality between symmet-
ric groups and general linear groups. The irreducible character basis introduced in [25]
may be defined via a lifting of the consequence

𝑝𝜇 =
∑︁
𝜆⊢𝑛

𝜒𝜆
𝑆𝑛
(𝜇)𝑠𝜆 (4.1)

of Schur–Weyl duality, with partition algebra characters used in place of symmetric
group characters in an analogue of (4.1). TheSageMath implementation of the 𝑠-basis
from [25] provides a useful way of computing partition algebra characters, which could
be used to obtain a useful way of computing recombinants. We encourage applications
of this.

Temperley–Lieb algebras form an important family of subalgebras of partition alge-
bras. The Temperley–Lieb immanants introduced by Rhoades and Skandera [30] are
𝑓 -immanants defined in a way related to Temperley–Lieb algebras, referring to [30]
for details. It seems that past research influenced by [30], including relevant research
on immanants or immanant-type functions as in [3, 27, 28, 29], has not involved any
generalizations of immanants using partition algebra characters. It may be worthwhile
to explore relationships among recombinants and Temperley–Lieb immanants, or to
explore generalizations or variants of recombinants related to the way Temperley–Lieb
immanants are defined.

The concept of a twisted immanant was introduced in [14] and was based on how the
irreducible character 𝜒𝜆, if restricted to an alternating subgroup, splits as a sum of two
irreducible characters, writing 𝜒𝜆 = 𝜒𝜆+ + 𝜒𝜆− . What would be an appropriate notion
of a twisted recombinant, and how could this be applied in a similar way, relative to [14]?
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