We describe how the material properties of III–V semiconductors, including bandgap, band structure, band offset, refractive index, absorption, and ionization coefficient, are exploited for lasers and photodetectors for fiber-optic communications. The material systems discussed for 1.3 μm and 1.55 μm light emission include the more traditional GaInAsP and AlGaInAs on InP, the more recently investigated GaInAs quantum dots and low-bandgap GaInNAs on GaAs as well as GaAsSb/GaAs Type II structures, and the potentially viable GaN/AlGaN from intersubband transitions (i.e., between quantized conduction-band energy levels). As an example of photodetector applications, GaInAsP/InP and wafer-fused GaInAs/Si are discussed in terms of gain and noise factor for use in avalanche photodiodes with separate absorption and multiplication regions.