We show that if there is a supercompact cardinal, then Keisler’s order is not linear. More specifically, let Tn,k be the theory of the generic n-clique free k-ary graph for any n > k ≥ 3, and let TCas be the simple nonlow theory described by Casanovas in [2]. Then we show that TCas$$Tn,k always, and if there is a supercompact cardinal then Tn,k$$TCas.