The functional diversity structure of a community can be represented as a combination of three additive components (species dominance D, functional redundancy R, and functional diversity Q) (DRQ approach in which different facets of functional differences between species are considered simultaneously). We applied this concept to assemblages of fleas and gamasid mites parasitic on small mammals at continental (across regions of the Palearctic) and regional (across sampling sites in Slovakia) scales and asked: What are the relative effects of host species, biome/habitat type, and geographic locality on the DRQ composition of a parasite assemblage? At the continental scale, regions were partitioned according to predominant biome or geographic position in a continental section. At the regional scale, sampling sites were partitioned according to habitat type or geographic locality. We tested for differences in the functional diversity structure (measured as the DRQ composition) of an ectoparasite assemblage (a) within a host species between biomes/habitat types or continental sections/localities and (b) between host species within a biome/habitat type or a continental section/locality. At both scales, the functional diversity structure of both flea and mite assemblages differed mainly between host species within a biome/habitat or geographic regions/locations, whereas differences in the DRQ composition between biomes/habitats or geographic regions/locations were only detected in a few host species. We compare our results with the results of earlier studies and conclude that the DRQ approach has an advantage over a single diversity metric and allows a better understanding of spatial variation in different facets of ectoparasite diversity.