The in vitro transformation of the miracidium to the mother sporocyst of Schistosoma margrebowiei was initiated by placing the miracidium in mammalian physiological saline. The transformation occurs in stages: the cilia cease beating; the ciliated plates become detached from the intercellular ridges and underlying muscle layers; the intercellular ridges spread over the body surface eventually forming a new tegument; the sporocyst changes from an ovoid to a tubular shape in about 48 h at room temperature. The surfaces of the miracidium, sporocyst and cercaria of S. margrebowiei display stage-specific carbohydrates on their surfaces as indicated by lectin staining. Ricin120 stains the cilia alone of the miracidium whereas peanut agglutinin stains the larval surface except for the cilia. The intercellular ridges of the miracidium stain with concanavalin A and wheat germ agglutinin, and these lectins stain the entire surface of the mature mother sporocyst. The cercaria is the only larval stage which stains positively with asparagus pea lectin. Bulinus nasutus is incompatible with Schistosoma margrebowiei; the haemolymph of this snail contains an agglutinin which agglutinates a wide variety of mammalian erythrocytes including those of human ABO blood groups. The haemagglutinin titre of B. nasutus plasma is reduced after incubation with miracidia of S. margrebowiei indicating that the agglutinin is absorbed onto the surface of this larval stage but not that of the mother sporocyst or cercaria. The possible roles of agglutinins in host–parasite interactions together with the significance of the differences in the surface carbohydrates of the larval stages are discussed.