We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let be the self-adjoint operator associated with the Dirichlet form
where ϕ is a positive C2 function, dλϕ = ϕdλ and λ denotes Lebesgue measure on ℝd. We study the boundedness on Lp(λϕ) of spectral multipliers of . We prove that if ϕ grows or decays at most exponentially at infinity and satisfies a suitable ‘curvature condition’, then functions which are bounded and holomorphic in the intersection of a parabolic region and a sector and satisfy Mihlin-type conditions at infinity are spectral multipliers of Lp(λϕ). The parabolic region depends on ϕ, on p and on the infimum of the essential spectrum of the operator on L2(λϕ). The sector depends on the angle of holomorphy of the semigroup generated by on Lp(λϕ).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.