Certified organic farming is a suite of regulated practices that can support social, economic, and ecological sustainability in agriculture. Despite the standardization and regulation of certifying bodies, practices adopted by organic farmers vary with potential heterogeneous effects on environmental outcomes. While it is accepted that beliefs can enable or constrain the adoption of farming practices, it remains unclear if variation in organic farmer beliefs mediates observed heterogeneity in practices and the ecology of farms. Communities of soil microorganisms that induce plant resistance and regulate insect herbivores offer a lens to explore the relationship between beliefs and practice adoption. Variation in insect herbivores across organic farms is common but none have studied the role of farmer beliefs in regulating pests through the soil microbiome. Herein, we hypothesized that variation in adoption of microbiome-supportive practices by organic farmers is driven by heterogeneity in their microbiome beliefs. We also investigate the importance of demographic variables and farm characteristics, compared to farmer beliefs, for adoption of practices that support the microbiome. To test our hypothesis, we surveyed the microbiome beliefs, farming practices, and motivations of 85 organic farmers in New York State, USA. We used affinity propagation to cluster farmers by their beliefs, and statistical models to evaluate variation in farming practice adoption and farmer motivations. Our survey received a 30.5% response rate, most organic farmers (≈96%) believed the soil microbiome was important for supporting plant defenses and reducing pests, and <16% believed their farming practices were unimportant for promoting beneficial microbiomes. Seven clusters of farmers were identified that varied in their microbiome beliefs. Among the clusters ≈42% of farmers believed on-farm management and external factors (e.g., climate change) were important for promoting the microbiome. These farmers used fewer pesticides and synthetic mulches, more pre-planting practices (e.g., solarization), and were more motivated to adopt new practices to support the microbiome than their peers. The most important factors motivating adoption were reductions in pests, increased yields, and biodiversity benefits. Beliefs, demographics, and farm characteristics (e.g., time in organic management) were correlated with similar suites of farming practices, but only beliefs predicted farmer motivations. Our study suggests beliefs are key to understanding farmer motivations and promoting organic farming system sustainability via the pest-suppressive microbiome. More broadly, we suggest the need for socio-ecological approaches that account for farmer beliefs when studying the adoption of conservation practices in agroecosystems.