The following article is based on the presentation given by George M. Whitesides, recipient of the 2000 MRS Von Hippel Award, the Materials Research Society's highest honor, at the 2000 MRS Fall Meeting in Boston on November 29, 2000. Whitesides was cited for “bringing fundamental concepts of organic chemistry and biology into materials science and engineering, through his pioneering research on surface modification, self-assembly, and soft lithography.” The article focuses on the growing role of organic chemistry in materials science. Historically, that role has been to provide organic polymers for use in structures, films, fibers, coatings, and so on. Organic chemistry is now emerging as a crucial part of three new areas in materials science. First, it provides materials with complex functionality. Second, it is the bridge between materials science and biology/medicine. Building an interface between biological systems and electronic or optical systems requires close attention to the molecular level of that interface. Third, organic chemistry provides a sophisticated synthetic entry into nanomaterials. Organic molecules are, in fact, exquisitely fabricated nanostructures, assembled with precision on the level of individual atoms. Colloids are a related set of nanostructures, and organic chemistry contributes importantly to their preparation as well.