This paper presents the results of reverse-engineering (RE) strategies, surface roughness and computational fluid dynamics (CFD) modelling for a Wren100 micro gas turbine (MGT). Utilising silicone moulds and resin tooling, precise blade geometry capture was achieved for 3D reconstruction allowing for discrete and parametric geometric models to be created. Using these geometries, CFD simulations employing both Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) models, alongside experimental wind tunnel cascade tests, were used to evaluate these reverse engineering strategies. The results show that while the parametric model captures overall MGT performance with fewer parameters, the discrete model provides enhanced accuracy, highlighting its suitability for detailed aerodynamic analyses. Contrary to initial expectations, surface roughness exhibited a noticeable impact on performance despite the lower Reynolds numbers (40,000), as demonstrated by the CFD model and wind tunnel experiments. The results indicate that surface roughness can reduce laminar separation bubbles on the blade leading edge, delay the onset of transition, and mitigate secondary flow losses. Overall, this study contributes to knowledge advancement in turbine blade reverse engineering and aerodynamics by detailing the impact of surface roughness on performance.