We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ be a finite group, and let $k$ be a field whose characteristic $p$ divides the order of $G$. Freyd's generating hypothesis for the stable module category of $G$ is the statement that a map between finite-dimensional $kG$-modules in the thick subcategory generated by $k$ factors through a projective if the induced map on Tate cohomology is trivial. We show that if $G$ has periodic cohomology, then the generating hypothesis holds if and only if the Sylow $p$-subgroup of $G$ is ${{C}_{2}}$ or ${{C}_{3}}$. We also give some other conditions that are equivalent to the $\text{GH}$ for groups with periodic cohomology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.