A novel and highly efficient Ag3VO4/C3N4/reduced TiO2 microsphere composite was obtained through a hydrothermal and depositional process. The microstructure, individual components with different proportions, and optical properties of the ternary nanocomposites were intensively studied. The prepared ternary composites exhibited superior photocatalytic performance of degradation of methylene blue compared with single component and S1 (C3N4/reduced TiO2) binary composites, demonstrating that the introduction of Ag3VO4 into g-C3N4/r-TiO2 can effectively improve the photocatalytic activity. Recycling experiments confirmed that the nanocomposites exhibited superior cycle performance. The enhanced capability could be attributed to a synergetic effect including the formation of heterojunction, large surface area, improved light absorption, matched energy band structure, and the improved separation efficiency of photogenerated charges coming from dual Z-scheme structure. Particularly, the introduction of Ag3VO4 makes the dual Z-scheme charge transfer pathway completed with improved separation efficiency and stronger redox ability of photogenerated electrons and holes. The work provides a promising method to develop a new dual Z-scheme photocatalytic system to remove environmental pollutant.