Two novel porphyrins (5,10,15,20-tetra(3-(carboethoxymethyleneoxy)phenyl)porphyrin, H2TEPp and 5,10,15,20-tetra(3-(carboxymethyleneoxy)phenyl)porphyrin, H2TCPp) and their copper(II) porphyrins (CuTEPp, CuTCPp) were synthesized. With these porphyrins, four new porphyrin-sensitized TiO2 nanorod composites (H2TEPp/TiO2, H2TCPp/TiO2, CuTEPp/TiO2, and CuTCPp/TiO2) were prepared and characterized by methods of XRD, SEM, TEM, FT-IR, UV-vis DRS, nitrogen adsorption–desorption and fluorescence spectra. Besides, the photocatalytic activity and stability of the composites were assessed in the degradation of 4-nitrophenol (4-NP). The results indicate that the morphologies and structures of these composites are less influenced by the loaded porphyrins or copper porphyrins compared with the nanorods TiO2 (anatase). The porphyrin or copper porphyrin molecules are confirmed to bond on the surface of TiO2 through carboxyl group, which is beneficial to the electron transfer between porphyrin and TiO2. All composites exhibit enhanced photoactivities compared with the bare TiO2 nanorods. The possible reason is that the recombination of photoproduced electron–hole has been controlled effectively in these composites, which can be seen from their decreased fluorescence emission. The stability results of composites show that they still hold considerable photocatalytic activities after six cycling experiments.