We consider the homogenization of both the parabolic and eigenvalue problems for a singularly perturbedconvection-diffusion equation in a periodic medium. All coefficients of the equation may vary both on themacroscopic scale and on the periodic microscopic scale. Denoting by ε the period, the potential or zero-orderterm is scaled as $\varepsilon^{-2}$ and the drift or first-order term is scaled as $\varepsilon^{-1}$ . Under a structuralhypothesis on the first cell eigenvalue, which is assumed to admit a unique minimum in the domain withnon-degenerate quadratic behavior, we prove an exponential localization at this minimum point. The homogenizedproblem features a diffusion equation with quadratic potential in the whole space.