We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $k$ be a base commutative ring, $R$ a commutative ring of coefficients, $X$ a quasi-compact quasi-separated $k$-scheme, and $A$ a sheaf of Azumaya algebras over $X$ of rank $r$. Under the assumption that $1/r\in R$, we prove that the noncommutative motives with $R$-coefficients of $X$ and $A$ are isomorphic. As an application, we conclude that a similar
isomorphism holds for every $R$-linear additive invariant. This leads to several computations.
Along the way we show that, in the case of finite-dimensional algebras of finite
global dimension, all additive invariants are nilinvariant.
In this article we prove that Kontsevich’s category NCnum(k)F of noncommutative numerical motives is equivalent to the one constructed by the authors in [Marcolli and Tabuada, Noncommutative motives, numerical equivalence, and semisimplicity, Amer. J. Math., to appear, available at arXiv:1105.2950]. As a consequence, we conclude that NCnum(k)F is abelian semi-simple as conjectured by Kontsevich.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.