We show that some q-series such as universal mock theta functions are linear sums of theta quotients and mock Jacobi forms of weight 1/2, which become holomorphic parts of real analytic modular forms when they are restricted to torsion points and multiplied by suitable powers of q. We also prove that certain linear sums of q-series are weakly holomorphic modular forms of weight 1/2 due to annihilation of mock Jacobi forms or completion by mock Jacobi forms. As an application, we obtain a relation between the rank and crank of a partition.