We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Scaling on-chip Cu wiring dimensions has degraded electromigration (EM) reliability with the same metallization and rapidly increased Cu resistivity. The size effects in EM and resistivity were caused by increased contributions from EM-induced mass flow and electron scattering with interfaces and grain boundaries, respectively. The EM Cu interconnect lifetime had further degraded by the decrease in the void volume required to cause EM failure. The Cu interconnect resistance was further increased by increasing the volume fraction of barrier/liner in metal wires that were required to produce chips with good reliability. In this chapter, we review the Cu microstructure and resistivity for various CMOS technological nodes, the basic physics of the EM phenomenon addressing EM mass transport, lifetime scaling rule, and damage formation in Cu damascene line structures. This is followed with discussions on Blech short length and EM scaling rule. Several techniques developed for improving EM reliability using upper-level dummy vias, impurities, Cu surface treatments, alternated liners, and surface metal coating are discussed together with the effects of Cu microstructure, atomic layer deposition MnOx liner, and Cu/carbon nanotube composite line on EM.Finally, the EM lifetimes, failure mechanisms and activation energies through various technological nodes are presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.