The impact of body density (BD) on an animal's capacity to sustain a workload is important in the accuracy of evaluating swimming exercise in rats and the associated training protocols. The aim of this study was to quantify the influence of BD the maximal lactate steady-state (MLSS) workload in swimming rats. The BD of ten 90-day-old rats and sixteen 120-day-old rats was determined by underwater weighing, and their aerobic capacity was determined by the MLSS test. The MLSS blood concentration values were 4.11 ± 0.96 mmol l− 1 in the 90-day-old rats and 4.81 ± 1.49 mmol l− 1 in the 120-day-old rats. There was no significant (P>0.05) difference between these values. The older rats were more dense (P < 0.001) and showed a significantly increased (P < 0.001) absolute effort and relative-to-body-weight effort to keep themselves on the water surface when compared with the younger rats. BD can significantly affect an animal's capacity to sustain work within this age range, and individual fluctuation in effort should be determined to avoid mistakes when interpreting the results. This is particularly important in longitudinal studies in which the intervention or ageing process can modify the animal's body composition. Our results quantify the effects of BD on the performance of rats in the MLSS test.