Previous studies of low-grade metamorphism in the Southern Uplands accretionary terrain indicated prehnite-pumpellyite facies/anchizone conditions developed throughout the area, except for local preservation of trench-slope sediments and an accreted seamount at zeolite facies/advanced diagenetic grade. New graptolite reflectance data are presented that show a general northward increase in temperature in the Southern Uplands. The results from two cross-strike traverses in the southern and central belts in contemporaneous sequences, using illite crystallinity, illite lateral spacing (bo) , and graptolite reflectance, indicate the development of systematic accretion-related low-grade metamorphism. Well-developed and constant anchizone conditions occur throughout the NE (Langholm) traverse, associated with common, F1 accretion-related folding and a regionally penetrative S1 cleavage. In the SW (Kirkcudbright) traverse, however, the youngest, last accreted packets are preserved at a transitional diagenetic stage and lack a penetrative S1 cleavage. Illite crystallinity, graptolite reflectance, and bo increase systematically northward through earlier accreted packets, reaching values of the NE traverse only at the northern end. The concomitant increase of bo with illite crystallinity suggests the relatively high P-low T trajectory characteristic of subduction zones. Integration of metamorphic and structural data relates increasing intensity of aceretion-related F1 folding, developmertt of S1 fabric, and onset of later fold phases to grade of metamorphism and structural level within the accretionary pile.