In this note we prove the following surprising characterization: if $X\,\subset \,{{\mathbb{A}}^{n}}$ is an (embedded, non-empty, proper) algebraic variety deûned over a field $k$ of characteristic zero, then $X$ is a hypersurface if and only if the module ${{T}_{{{O}_{{{\mathbb{A}}^{n\,/k}}}}}}(X)$ of logarithmic vector fields of $X$ is a reflexive ${{O}_{{{\mathbb{A}}^{n}}}}$-module. As a consequence of this result, we derive that if ${{T}_{{{O}_{{{\mathbb{A}}^{n\,/k}}}}}}(X)$ is a free ${{O}_{{{\mathbb{A}}^{n}}}}$-module, which is shown to be equivalent to the freeness of the $t$-th exterior power of ${{T}_{{{O}_{{{\mathbb{A}}^{n\,/k}}}}}}(X)$ for some (in fact, any) $t\,\le \,n$, then necessarily $X$ is a Saito free divisor.